Unsolved problems in photospheric science

Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC) Granada, Spain

Three key problems

- Magnetoconvection in the solar photosphere
 - Sunspots
- Origin and evolution of quiet Sun flux
 - Network
 - Internetwork
- Connection photosphere-chromosphere
 - Cancellation events
 - Emerging IN fields

Ortiz, Bellot Rubio, Rouppe van der Voort, ApJ (in press) CRISP @ SST + AO, Fe I 630 nm Energy transport in the presence of vertical field?

What's the subsurface structure of a sunspot?

Socas-Navarro et al., ApJ (2004)

Ortiz, Bellot Rubio, Rouppe van der Voort, ApJ (in press) CRISP @ SST + AO, Fe I 630 nm

Schüssler & Vögler, ApJL (2006)

- Umbral dots with upflows and central dark lanes
- Downflows at ends of dark lanes and periphery of UDs
- High spatial resolution needed: ~ 0.1"
- Very low scattered light levels

Spectropolarimetry at 0.14": downflows observed near the edge of UDs

Ortiz, Bellot Rubio, Rouppe van der Voort, ApJ (in press)

Rapid temporal evolution of flow field. Lifetimes: a few minutes

Scharmer et al., Nature (2002)

SST imaging, 0.1" resolution

Energy transport in the presence of inclined field?

What's the structure of the penumbra?

SST imaging, 0.1" resolution

Rempel et al., Science (2009)

Overturning convection?

- Filaments are hot convective upflows deflected radially outward by inclined sunspot field
- Return downflows occur on either side of the filaments

Radial velocity

Vertical velocity

Slit spectroscopy at 0.2": no overturning downflows larger than 100 m/s!!

Magnetoconvection in sunspot penumbrae

- CRISP @ SST + AO, 5 July 2009
- Fe I 630 nm line pair , 17 $\lambda 's$ per line
- 2 hr time series, MOMFBD

The temporal evolution is the key to understand magnetoconvection in the penumbra

Magnetoconvection in sunspot penumbrae

- CRISP @ SST + AO, 5 July 2009
- Fe I 630 nm line pair , 17 $\lambda 's$ per line
- 2 hr time series, MOMFBD

The temporal evolution is the key to understand magnetoconvection in the penumbra

The quiet Sun

Lites et al., 2008, ApJ, 672, 1237

Hinode/SP normal map Noise level: $1.1 \times 10^{-3} I_c$

- Network delineates supergranular cells
- Strong (kG) vertical fields
- Total network flux: ~ 4 x 10^{24} Mx

Ephemeral regions

- Small magnetic bipoles
- Emerge *near the center* of supergranular cells
- Early papers:

Dodson (1953), citing Babcock Harvey & Martin (1973) Harvey et al. (1975)

- Pole separation: ≤ 20"
- Horizontal speed: ~ 4 km/s
- Flux: 1-300 x 10¹⁸ Mx
- Mean flux: ~ 10¹⁹ Mx
- Lifetime: ~ 4 h

Chae et al. (2001)

Luis R. Bellot Rubio

Ephemeral regions

Hinode/NFI Na I D1 589.6 nm Cadence: 3 min FOV: 112" x 112"

Bipolar ephemeral regions are large structures formed by small-scale, mixed-polarity elements

Source of network flux

- Ephemeral regions are the main source of flux for the network
- Emergence rate: ~10⁶ ERs/day
- Flux rate: ~ 10²⁵ Mx/day
- Timescale for flux replacement
 - 40-70 h (Schrijver et al. 1997)
 - 40 h (Schrijver et al. 1998)
 - 8-19 h (Hagenaar et al. 2003)
 - 1-2 h (Hagenaar et al. 2008)

Hagenaar et al., ApJ (2003)

Source of network flux

- Ephemeral regions are the main source of flux for the network
- Emergence rate: ~10⁶ ERs/day
- Flux rate: ~ 10²⁵ Mx/day
- Timescale for flux replacement
 - 40-70 h (Schrijver et al. 1997)
 - 40 h (Schrijver et al. 1998)
 - 8-19 h (Hagenaar et al. 2003)
 - 1-2 h (Hagenaar et al. 2008)

Is the replacement really that fast?

Local surface dynamo simulations

Danilovic, Schüssler, Solanki, A&A (2010)

General agreement, but field too weak by a factor 3. Temporal evolution?

Magnetic coupling: flux cancellation events

TIP+POLIS @ VTT, + DOT

- Duration: minutes to hours
- Action occurs in thin contact line, but the two patches are affected
- Spatial resolution required: ~ 0.1"
- Multiwavelength observations, to follow process in different layers

Magnetic coupling: flux cancellation events

Zwaan, ARAA (1987)

Cancellation of opposite polarities can be interpreted as:

- a) Flux retraction
- b) Ascent of U-loop
- c) Submergence of Ω -loop

Processes (b)-(c) involve magnetic reconnection and may have consequences for chromosphere

Magnetic coupling: small-scale loops in the IN

Magnetic loops emerge in the internetwork on granular scales, showing linear polarization signal in between two-opposite polarity footpoints

Magnetic coupling: small-scale loops in the IN

 $t=0~{\rm s}$

Martínez González & Bellot Rubio, 2009, ApJ, 700, 1391

Magnetic coupling: small-scale loops in the IN

Martínez González et al., ApJL(submitted)

Important source of flux for the IN: ~ 10²⁴ Mx/day in the entire Sun About one quarter of the loops reach the chromosphere. Downflows and Ca II H brightenings at those heights: signature of heating?

Magnetic coupling: complex Stokes profiles

Quiet Sun at disk center 25 Sep 2007 Hinode/SP

60

80

100

Exposure time:	1.6 s/slit
Pixel size:	0.16″
FOV:	2.9″ x 40″
Cadence:	30 s

80

100

120

MMAM

Magnetic coupling: complex Stokes profiles

Sainz Dalda, Title, Bellot Rubio

One-lobed Stokes profiles are associated with strong flows Origin and effects on chromosphere?

Magnetic coupling: complex Stokes profiles

de Pontieu et al., ApJL (2009)

One-lobed Stokes profiles are associated with strong flows Origin and effects on chromosphere?

What do we need to solve these problems?

Excellent stability Uninterrupted observations (hours-days) Access to chromosphere, TR, and corona

PLUS

Spatial resolution of ~0.1" Excellent throughput (fast cadence)

What can SOLAR-C offer us?

Excellent stability Uninterrupted observations (hours-days) Access to chromosphere, TR, and corona

PLUS

Spatial resolution of ~0.1" Excellent throughput (fast cadence)

(with 1.5m telescope)

