SolarC-Plan A: Unraveling The Origin of the Solar

Magnetic Field

Allan Sacha Brun Service d'Astrophysique/UMR AIM, CEA-Saclay

- Observational evidences of solar magnetism and current limitations
- 3D MHD simulations of the magnetic Sun: what is needed
- The Sun as a star: magnetism, rotation

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

Observational Contraints for the Solar Dynamo and their current limitation

Wide range of dynamical scales!

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

Solar Internal Rotation

Helioseismology Results

(GONG, MDI, GOLF data)

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

Modulation of Differential Rotation Amplitude with Cycle

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

Torsional Oscillations

Meridional Circulation

More & more evidence for multi cellular MC

Global Helioseismology: G modes

Only: 15 kg 15 Watt Low Bps So ok for margin left

Golf-NG

Multi-channel Observations of sodium doublet

Low noise and Granulation vs depth allows detection of G-modes

First test in Teneriffe

Great opportunity to detect them! Allow a much better determination of tachocline, radiative interior and inner dynamics (fields, shear, rotation)

Polar Flux and Reversal

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

~90° Phase lag between Poloidal and Toroidal Fields

NASA/MSFC/NSSTC/Hathaway 2007/10

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

Dipole vs Quadrupole Amplitude

What Observations are Missing Today?

Surface Observations (High Temporal Cadence and Spatial Resolution):

- Constraining High latitude profile of Meridional Circulation
- Constraining High latitude profile of Differential Rotation
- Constraining Temperature latitude profile (via TSI)
- Characterizing Magnetic field in high polar region: Continuously no averages
- Quantifying exact phasing between poloidal and toroidal field and dominant mode
- Magnetic helicity budget and flux

Deep Observations (through local or global seismology)

- · Constraining radial and latitudinal profile of MC
- Constraining radial and latitudinal profile of Diff Rot including Tachocline
- Constraining thermal structure
- Detecting gravity modes and sounding the energy production region
- Constraining profile of Rotation deep into the interior
- Constraining topology and amplitude of primordial field
- Link between magnetic helicity, dynamo action and solar activity (flux emergence)
- History of angular momentum => stellar physics
- Solar dynamo => stellar dynamo => magnetic field

Multi-D Models of the Solar Dynamo and Magnetism

What is needed to Constraint Solar Dynamo Theory

Interface vs distributed Dynamo : location of global dynamo

Alpha-Omega vs Babcock-Leighton : choose which models/paradigm, need to identify transport processes

Key ingredients:

- Flow helicity and vorticity => alpha effect vs depth and latitude
- Large scale flows: topology, amplitude, variability of meridional circulation and differential rotation at all latitudes and as deep as possible
- Rotation profile: tachocline, radiative interior => angular momentum history
- Transport processes (pumping of field, diffusion, advection...)
- Large Scale magnetic field topology and amplitude in interior
- Relative amplitude poloidal/toroidal, temporal phasing, spatial location
- Flux emergence at all latitudes and scales, substructure of active regions

 Magnetic helicity budget, how dynamo generated field are build « conserving » Hmag?

Surface Flux Transport models

Strength of polar branch key to constraint dynamo!

Brun

A.S. Brun, Solar-C Working Group, Tokyo, 03/09/10

2D Mean Field models: Babcock-Leighton Standard model: 1 cell per hemisphere

Jouve & Brun, 2007 A&A, 474, 239

Check Benchmark international: Jouve et al. 2008, A&A

2D Mean Field models: Babcock-Leighton Standard model: 1 cell per hemisphere

Phasing of toro/polo

Jouve & Brun, 2007 A&A, 474, 239

2D Mean Field models: Babcock-Leighton Influence of High Latitude and Deep Counter Cells

Jouve & Brun, 2007 A&A, 474, 239

2D Mean Field models: Babcock-Leighton Influence of High Latitude and Deep Counter Cells

Jouve & Brun, 2007 A&A, 474, 239

Convection pattern and magnetic field structure

The B field is much more organized in tachocline (possessing an antisymmetric profile)

Browning et al. 2006, ApJL

Toroidal Field in Convection

A.S. Brun, Hinode 3rd Science Meeting, Tokyo, 12/01/09

linal comp (Pm=4)

Influence of a Tachocline?

Browning et al. 2006, ApJL

We impose a thermal wind in the stable lower zone compatible with a tachocline of shear maintained by a viscous drag.

Angular Momentum Balance in Presence of B

The transport of angular momentum by the Reynolds stresses remains at the origin of the equatorial acceleration. The Maxwell stresses seeks to speed up the poles.

Getting Strong Toroidal Field

Solar Radiative Interior Dynamics

Brun & Zahn 2006, A&A, 457, 665; Zahn et al. 2007, A&A, 647, 145

Top of radiative zone (shear imposed by convection zone on top of RZ)

Fossil magnetic field

Final State: Ferraro's law of isorotation @ solar age

Interaction between a fossil field and the inward propagation of a latitudinal shear (e.g. the solar differential rotation)

Brun & Zahn 2006, A&A

New Results on the Deep Sun

1

Taylor-Proudman Theorem & Thermal Wind

The curl of the momentum equation gives the equation for vorticity $\omega = \vec{\nabla} \times \vec{v}$:

$$\frac{\partial \vec{\omega}}{\partial t} + \vec{v}.\vec{\nabla}\vec{\omega} - \vec{\omega}.\vec{\nabla}\vec{v} = v\vec{\nabla}^2\vec{\omega} + \frac{1}{\rho^2}\vec{\nabla}\rho \wedge \vec{\nabla}p \quad (a)$$

Taylor-Proudman Theorem:

In a stationary state, the ϕ component of (a) can be simplified to:

$$2\Omega \frac{\partial \hat{\mathbf{v}}_{\boldsymbol{\varphi}}}{\partial z} = 0 \quad => \mathbf{v} \boldsymbol{\varphi} \text{ is cst along z}$$

the differential rotation is cylindrical (Taylor columns) and the flows quasi 2-D.

Thermal Wind:

The presence of cross gradient between p and ρ (baroclinic effects) can break this constraint (as well as Reynolds & viscous stresses and magnetic field) :

$$2\Omega \frac{\partial \hat{\mathbf{v}}_{\varphi}}{\partial z} = -\frac{1}{\hat{\rho}^2} \vec{\nabla} \hat{\rho} \wedge \vec{\nabla} \hat{p} \bigg|_{\varphi} = \frac{1}{\hat{\rho} C_p} \left[\vec{\nabla} \hat{S} \wedge -\hat{\rho} \vec{g} \right]_{\varphi} = \frac{g}{r C_p} \frac{\partial \hat{S}}{\partial \theta}$$

Thermal Perturbations

Key to determine inner dynamics and rotation profile => solar cycle

3-D Views of Internal Waves

Vr

We see them in the models, we need to search for them: Key to contrain inner dynamics, primordial fields topology, angular momentum budget and history, deep rotation profile

Evolution of a Fossil Field in 3-D Radiative/Convective

Interaction between Radiation and Convection/Tachocline Zones fundamental to determine global solar magnetism and rotation history

=> Ferraro's law still present (Strugarek, Brun, Zahn 2010)

The Sun as a star: magnetism, rotation, dynamo => Making the link with astrophysical questions

Stellar Magnetism: X Luminosity

ultra-cool star V374 Pegasi

Solar Type Stars (late F, G and early K-type)

Over 111 stars in HK project (F2-M2): 31 flat or linear signal 29 irregular variables 51 + Sun possess magnetic cycle

Wilson 1978 Baliunas et al. 1995

Call H & K lines , $\langle R'_{HK} \rangle$

Solar Analogs

Name	${f T_{eff}}{f K}$	log(g) [cm.s ⁻²]	$[{ m M}/{ m H}]$ [Sun]	${ m Mass} { m M}_{\odot}$	$egin{array}{c} { m Age} \\ { m Gyr} \end{array}$	$v \sin i$ km s ⁻¹	${f P}_{ m rot}^{ m eq}\ ({f d})$	$\frac{d\Omega}{(\mathrm{rad.d}^{-1})}$	$(^{\circ})$
Sun	5770	4.44	0.00	1.0	4.3 ± 1.7	1.7	24	0.05	3 1 3
$HD \ 146233$	5791 ± 50	4.41 ± 0.06	0.03 ± 0.03	0.98 ± 0.13	$4.7^{+2.7}_{-2.7}$	2.1 ± 0.5	22.7 ± 0.5	2000	70^{+20}_{-25}
HD 76151	5790 ± 50	4.55 ± 0.06	0.07 ± 0.03	1.24 ± 0.12	$3.6^{+1.8}_{-2.3}$	1.2 ± 0.5	20.5 ± 0.3		30 ± 15
HD 73350	5802 ± 50	4.48 ± 0.06	0.04 ± 0.03	1.01 ± 0.14	$4.1^{+2.0}_{-2.7}$	4.0 ± 0.5	12.3 ± 0.1	0.2 ± 0.2	75^{+15}_{-20}
$HD \ 190771$	5834 ± 50	4.44 ± 0.06	0.14 ± 0.03	0.96 ± 0.13	$2.7^{+\bar{1}.9}_{-2.0}$	4.3 ± 0.5	8.8 ± 0.1	0.12 ± 0.03	50 ± 10

Petit et al. 2008, MNRAS

Table 3. Magnetic quantities derived from the set of magnetic maps. We list the mean unsigned magnetic field (B_{mean}) , the fraction of the large-scale magnetic energy reconstructed in the poloidal field component and the fraction of the *poloidal* magnetic energy in the dipolar $(\ell = 1)$, quadrupolar $(\ell = 2)$ and octopolar $(\ell = 3)$ components. In the last column, we also list $\log R'_{\text{HK}}$ values derived from our sets of Stokes I spectra.

Name	$egin{array}{c} B_{\mathrm{mean}} \ \mathrm{(G)} \end{array}$	pol. en. $(\% \text{ tot})$	dipole $(\% \text{ pol})$	quad. $(\% \text{ pol})$	oct. $(\% \text{ pol})$	$\log R'_{\rm HK}$
HD 146233	3.6 ± 1	99.3 ± 0.2	34 ± 6	56 ± 6	10 ± 10	-4.85 ± 0.02
HD 76151	5.6 ± 2	93 ± 6	79 ± 13	18 ± 8	3 ± 3	-4.69 ± 0.02
HD 73350	42 ± 7	52 ± 3	24 ± 5	29 ± 8	33 ± 5	-4.48 ± 0.02
HD 190771	51 ± 6	34 ± 1	43 ± 8	20 ± 2	23 ± 4	-4.42 ± 0.02

Theoretical models: Jouve, Brown, Brun 2010, Brown et al. 2010

ESPADON/NARVAL

How Solar-C/Plan A can help solving the Origin of Solar Magnetism (Dynamo), Structure of the Solar Interior and beyond

With Plan A High Altitude Orbit:

- By improving our knowledge of meridional circulation, differential rotation, transport processes thus constraining three key ingredients of the solar Dynamo, detection high polar branch of torsional oscillations
- By characterizing magnetic fields, polar reversals, phasing of toro/polo components, coupling between large scales flow and field
- Structure of wind, angular momentum lost
- Sounding the deep interior (tachocline and upper radiative zone) for flows, maximum field strengths and field topology, thermal structure, Dynamo in radiative core?
- g-modes detection via global seismology (Golf-NG): sound speed, density, field and rotation profiles down to the core (energy prod region)

• The Sun as a star: allow to answer key astrophysical questions: Angular momentum history, dynamo mechanism, cosmic magnetism