Energy and Mass Transfer through the Chromosphere

Bart De Pontieu

Lockheed Martin Solar & Astrophysics Lab Palo Alto, CA, USA

Why do we care about the chromosphere?

The chromosphere is where most of the nonthermal energy that creates the corona and solar wind is released or transformed.

Chromosphere requires 50 times heating rate of corona, and provides all mass to heliosphere

- A. What types of non-thermal energy dominate in the chromosphere and beyond?
- B. How does the chromosphere regulate the mass and energy supplied to the corona and heliosphere?
- C. How does magnetic flux and matter rise through the lower atmosphere, and what role does flux emergence play in powering flares and mass ejections?

movies courtesy of Alan Title

Why do we care about the chromosphere?

- Compatible high spatial and temporal resolution from photosphere to corona
- Wide spectral coverage
- Magnetic Field in Chromosphere
- Context/Complementarity (Great Observatory)
- Numerical Simulations

Tremendous discovery space The chromosphere is where most of the nonthermal energy that creates the corona and solar wind is released or transformed.

Chromosphere requires 50 times heating rate of corona, and provides all mass to heliosphere

- A. What types of non-thermal energy dominate in the chromosphere and beyond?
- B. How does the chromosphere regulate the mass and energy supplied to the corona and heliosphere?
- C. How does magnetic flux and matter rise through the lower atmosphere, and what role does flux emergence play in powering flares and mass ejections?

Solar C plan B will provide major breakthrough science

- I.Source, propagation and dissipation of Alfven waves that help drive solar wind,
- 2. Connection between chromosphere and corona: mass cycle, constrain coronal heating models,
- 3. Magnetic field extrapolations from chromospheric vector-magnetic data into heliosphere will allow detailed accounting of helicity and magnetic free energy that drive solar activity,

4. Heating of quiescent and active chromosphere.

To determine energy and mass transfer from chromosphere into corona/heliosphere, we need

I.A large observatory that obtains spectra and images that simultaneously cover the photosphere, chromosphere, TR and corona (from 4,000K to 10 MK),

2. simultaneously at high spatial resolution (~0.2 arcsec),

3.temporal resolution (<10 s) over a large FOV (120 arcsec),

4.and spectral resolution (0.5 km/s in TR/corona from centroiding)

5. without issues of co-alignment (i.e., different instruments with predefined co-alignment strategies, slit-jaw),

6. with high S/N polarimetry in photosphere and chromosphere.

The chromosphere then... vs now... I arcsec, 30 s resolution vs 0.2 arcsec, 1.6 s resolution

Observing the Roots of Coronal Heating -- In The Chromosphere

Chromosphere-Corona connection visible in faint upflows (3rd and 4th moment of spectral lines)

Wednesday, March 10, 2010

Using Line Asymmetries to Study Coronal Upflows

Ubiquitous, faint (5-10%) upflows of 50-100 km/s seen in many TR and coronal lines above AR/QS/CH network/plage with EIS, SUMER (incompatible w/current coronal nanoflare models)

Requires: High S/N spectroscopy from chromosphere to corona at high spatial resolution (0.2-0.3 arcsec) and cadence (<10 s)

Outflows have been seen with TRACE and XRT, sometimes interpreted as propagating slow-mode waves

"blobs" of plasma propelled outwards sometimes quasi-periodic ~3-20 minutes V:75-150km/s

Schrijver et al., Sol. Phys., TRACE first results, 1999 Sakao et al. 2007, Science, **318**, 1585 De Pontieu, McIntosh, Hansteen & Schrijver 2009, ApJL, **701**, 1 McIntosh & De Pontieu 2009, ApJL, **706**, 80

Asymmetries in EIS/SUMER profiles suggest TRACE/XRT/AIA should see shortlived (~100s) upflows of 100 km/s at 1-10% of background loop emission: Requires high S/N coronal imaging for wide range of T at high spatial resolution

Wednesday, March 10, 2010

THRAQDE/XRTĂ

Loops with propagating "blobs" show strong blueward line asymmetries (EIS) at the footpoints for T=0.5 to 2 MK

Compare EIS & XRT

5% Asymmetry - Same velocity! Visible in Unipolar Magnetic Regions Across Many Temperatures Co-spatial/temporal with "blobs"

De Pontieu, McIntosh, Hansteen & Schrijver 2009, ApJL, **701**, 1 McIntosh & De Pontieu 2009, ApJL, **706**, 80

Plage below TR/coronal upflows (100 km/s) shows type II spicules in Ca H at similar speeds

5% Asymmetry - Same velocity! Visible in/from unipolar magnetic regions! Type-II Spicules! Co-spatial/temporal with "blobs"

De Pontieu, McIntosh, Hansteen & Schrijver 2009, ApJL, **701**, 1 McIntosh & De Pontieu 2009, ApJL, **706**, 80

- Emission in core of coronal lines dominated by emission from previously filled loops (slowly cooling/evaporating plasma)
- 2. Chromosphere-Corona connection visible in faint upflows (3rd and 4th moment of spectral lines)

3. Constrains coronal heating theories: coronal heating occurring at low heights? Requires: High S/N spectroscopy & imaging from chromosphere to corona at high spatial resolution (~0.2 arcsec) and cadence (<10 s)

Measuring line profile shapes important

Requires: High S/N spectroscopy & imaging from chromosphere to corona at high spatial resolution (~0.2 arcsec) and cadence (<10 s)

Compatible resolutions for all T crucial

STEREO movie 171 A (1 MK) 80 s cadence 2.5 arcsec pixels

CRISP overlay Hα (0.01 MK) I0 s cadence 0.08 arcsec pixels High throughput crucial for slit-scanning spectrograph to allow rapid rasters that track chromospheric/TR/coronal evolution

Simulated rasters on HINODE background

"SUMER" raster

Solar C plan B will have great synergies with Interface Region Imaging Spectrograph (IRIS) Small Explorer

IRIS in brief

UV slit-jaw Images Si IV (65,000K) C II (30,000K)

Mg II h/k (10,000K) Mg II h/k wing (6,000K)

Realistic Radiative 3D MHD models...

... to guide interpretation

20 cm UV telescope:

1/6 arcsec pixels

multi-channel spectrograph

far-UV: 1332-1358 Å, 1390-1406 Å, 40 mÅ resolution, effective area 2.8 cm² *near-UV*:2785 - 2834 Å,

80 mÅ resolution, effective area 0.3 cm² slit-jaw imaging

1335 Å & 1400 Å with 40 Å bandpass each; 2796 Å & 2831Å with 4Å bandpass each.

IRIS spectra and slit-jaw imaging covers the photosphere, chromosphere, transition region

Fixed Slit Mode	lon	λ	Δλ	Log T	Log T Estimated Count Rate (counts/s/line/spatial pixel)		ate pixel)	Detector
	Spectrum	A	mA	к	Quiet Sun	Active Region	Flare	Detector
UV Spectra (effective area of 2.8 cm ² for far-UV, 0.3 cm ² for Mg passband, continuum is 1 Å ^{†:} Count rates for Mg II wing, h and k are in counts/s/spectral pixel/spatial pixel								
Typical EOV: 0.3" x 40"	Si I (3P) Cont	1335	12.5	3.7	40	80		1
Typical cadence: 1-2 s	Mg II wing	2820	25	3.7-3.9	2100 [†]	7500†	7500†	3
	01	1356	12.5	3.8	50	100	250	1
Dense Raster Mode	Mg II h	2803	25	4.0	870†	3400 [†]	13000†	3
	Mg II k	2796	25	4.0	1100 [†]	4500 [†]	10000†	3
	CII	1335	12.5	4.3	540	1970	22000	1
	СІІ	1336	12.5	4.3	500	1780	20000	1
	Si IV	1403	12.5	4.8	400	1000	1e6	2
	Si IV	1394	12.5	4.8	640	2200	3e6	2
Typical FOV: 4x40"	O IV	1401	12.5	5.2	65	116	2e5	2
Typical repeat cadence: 10 s	O IV	1400	10.5	5.0	20	00	1e5	2
		1349	12.5	6.2	30	50	500	1
Sparse Raster Mode	Fe XXI	1354	12.5	7.0	10	40	4e4	1
	UV Slit-Jaw mages Estimated Count Pate (seculo/o/pixel)							
	Effective area	0.005 c	m ² with	FAFWH	M filter for Mg II;	0.7 cm ² with	40 Å FWHM	I for far-UV.
	Mg II wing	2816		3.7-3.9	1500	3500	3500	4
	Mg II k	2796		4.0	750	3500	8500	4
	СШ	1335		4.3	400	1300	13000	4
Typical repeat cadence: 30 s	Si IV	1400		4.8	300	1200	2e5	4
	-							

Solar C plan B will be able to resolve structures from chromosphere to corona

Compared to IRIS, Solar C plan B will

- I.provide better spatial resolution for a wide range of temperatures,
- 2.provide critical magnetic field measurements (photosphere, chromosphere),
- 3.will have much larger FOV (using FPI) compared to IRIS' slit-based spectrograph: flares, large-scale evolution,...
- 4.provide the high temperature coverage that IRIS lacks (much higher S/N spectra and imaging).

Fabry-Perot Interferometers (FPI) required to track rapid chromospheric dynamics

Wednesday, March 10, 2010

Fabry-Perot Interferometers invaluable to study rapid, fine-scale chromospheric dynamics (e.g, disk counterparts of type II spicules) movie courtesy of Luc Rouppe van der Voort

 $H\alpha$ line core

Hα - I.3Å (-60 km/s)

FPI observations reveal rapid blueshifted events, constraining formation mechanism of type II spicules by showing heating and acceleration

Seeing-free observations critical for chromospheric studies

Very general: many inclined lines in xt-cuts of unsharp masked data Typically: thin spicules moving laterally by 0.5 Mm, at ~10-25 km/s

Space (x [Mm])

These transverse motions had been detected before in ground-based data

Transverse motions of order 0.1-0.5 arcsec \sim same scale as seeing distortions Seeing-free observations crucial

Non-thermal energy deposition: Alfven waves

Hinode/SOT Ca II H data (10,000 K)

Alfvenic Waves with Amplitudes of ~ 20 km/s and Periods 100-1000 s Flux ~ 100 erg/cm2/s

Enough to power solar wind

De Pontieu et al., 2007

Solar C chromospheric data will help reveal origin of these waves

Tomczyk et al., 2007, Tomczyk & McIntosh, 2009, McIntosh et al., 2010

High-resolution CoMP-like observations of transverse incompressible waves in the corona can provide seismology, but also insight in nonthermal energy deposition

How do magnetic fields impact chromosphere dynamics? Formation of type II spicules

Importance of chromospheric field measurements

green: Joule heating grey:TR courtesy Juan Martinez Sykora (LMSAL, UiO)

3D radiation MHD simulations indicate jet formation triggered at chromospheric heights

Magnetic Field non-linear force free field extrapolations

Extrapolation from photospheric field magnetograms problematic Images from DeRosa et al., 2009

Magnetic Field non-linear force free field extrapolations

Table 1

Model ^b	$E/E_{\rm pot}^{\rm c}$	$\langle \mathbf{CW}\sin\theta\rangle^{\mathrm{d}}$	$\langle f_i \rangle^{\rm e} (\times 10^8)$	$\langle \phi \rangle^{1}$					
Pot	1.00		0.02	24°					
Wh ⁺	1.03	0.24	7.4	24°					
Tha	1.04	0.52	34.0	25°					
Wh ⁻	1.18	0.16	1.9	27°					
Val	1.04	0.26	71.0	28°					
$Am1^{-}$	1.25	0.09	0.72	28°					
$Am2^{-}$	1.22	0.12	1.7	28°					
Can ⁻	1.24	0.09	1.6	28°					
Wie	1.08	0.46	20.0	32°					
McT	1.15	0.37	15.0	38°					
Rég ⁻	1.04 ^g	0.37	6.2	42°					
Rég ⁺	0.87 ^g	0.42	6.4	44°					

NLFFF Model Extrapolation Metrics^a for AR 10953

Extrapolation from photospheric field magnetograms problematic

courtesy DeRosa et al., 2009

Non-linear force free field (NLFFF) extrapolations

NLFF algorithms do not yield consistent solutions for solar data

- •Photosphere is not force-free, i.e., many (most?) currents seen at the photosphere do not reach the corona
- •Successful application likely requires :
 - large field of view at high resolution (connectivity to surroundings)
 - •'preprocessing' of lower-boundary vector field (non-force free to force-free)

•measurement of vector field at top of chromosphere?

 [[]Schrijver et al. 2006 (SPh 235, 161), 2008 (ApJ 675, 1637), Metcalf et al. 2008 (SPh 247, 269), DeRosa et al. (2008, ApJ 696, 1780).

To determine energy and mass transfer from chromosphere into corona/heliosphere

I.A large observatory that obtains spectra and images that simultaneously cover the photosphere, chromosphere, TR and corona (from 4,000K to 10 MK),

2. simultaneously at high spatial resolution (~0.2 arcsec),

3.temporal resolution (<10 s) over a large FOV (120 arcsec),

4.and spectral resolution (<0.3 km/s in TR/corona)

5. without issues of co-alignment (i.e., different instruments with predefined co-alignment strategies, slit-jaw),

6.with high S/N polarimetry in photosphere and chromosphere (FPI, seeing-free).