Total Solar Irradiance and Solar Luminosity

2nd SOLAR-C Science Definition Meeting, ISAS/JAXA, 9. March 2010

Wolfgang Finsterle

Physikalisch-Meteorologisches Observatorium Davos 1 World Radiation Centre

TSI on SOLAR-C(A) — Science Goals

- Solar luminosity
 - Variability over the solar cycle?
 - Standard Solar Model boundary condition
 - Stellar evolution theory
- Meridional circulation and north-south asymmetries of the solar activity (dynamo)
 - Meridional temperature gradient
 - Discriminate between different models for latitudinal dependency of TSI variability

Luminosity ↔ Stellar Structure

- Steady-state assumption: $\frac{dL}{dr} = 4\pi r^2 \rho(\epsilon \epsilon_v)$
- Solar Luminosity: $L_0 = 4\pi r_0^2 \sigma T_{surface}^4 = 4\pi r_0^2 \int \rho(\epsilon \epsilon_v)$
- $T_{surface}$ is linked to T_{core} via energy production process (p-p chain efficiency scales with T_{core}^{4})
- → Accurate measurement of L_o thus allows us to determine the solar surface and core temperatures and to validate the Standard Solar Model and stellar evolution theory

Observational Requirements for Solar Luminosity

- Integrated disk measurements
- High heliographic latitude
 - ✓ At 40° the effect of the polar areas appears with 64% of its amplitude
- Low noise level
 - ✓ thermal stability
 - ✓ temporal stability

Additional Benefits — Meridional Temperature

- Meridional temperature measured with HINODE suffers from uncertainty in photometric calibration of the images
- Integrated-disk measurements of TSI at different latitudes eliminate this problem
- 1K ~ 1 Wm⁻² (~700 ppm)

Latitudinal Heat Flow

- Conical (rather than cylindrical) rotation profile is indicative of latitudinal heat transfer and/or thermal forcing from the tachocline [Miesch et al., 2006]
- Variability of order of 1 10 K have been predicted by simulations and measured by helioseismic inversions [Brun et al., 2010]

Simulations vs. Observations

Brun et al., 2010

PMO6/PREMOS Thermal Stability

New TSI Radiometer

Thermal Stability (-10 – 30 °C)

WrC

Reproducibility of measurements better than 10 ppm

10

What do we expect to see?

VIRGO Irradiance with Krivova Model subtracted (Krivova et al., 2003)

N-S Asymmetry in Variability

Irradiance Variability

Results from VIRGO/SOHO

"The influence of an inclined rotation axis on solar irradiance variations"

Fig. 10. Comparison of the inclination effect for the flux integrated over the total wavelength range predicted by our model and under the assumptions of R98 and S93.

Knaack et al. 2001

Summary of VIRGO Results

- Ascending phase of solar cycle 23 appeared to be asymmetric
 - Larger variability on the southern hemisphere
 - Fully explained by Krivova TSI reconstruction
 - High-latitude observations allow to discrimination between conflicting model predictions
 - Accurate measurement of N-S asymmetry may help to better understand the solar dynamo

Summary of Scientific Return from TSI on SOLAR-C(A)

- Solar Luminosity
 - Temperature of solar core and surface
 - Energy production rate
 - Differential rotation, meridional circulation
 - Re-calibrate standard solar model and stellar evolution theories
- Asymmetries in activity pattern
 - Discriminate between conflicting models
 - Confine dynamo governing parameters