SOLAR-C Mission Option-A (Plan-A)

H. Hara (NAOJ) JAXA SOLAR-C WG 2010 Mar 9

2nd SOLAR-C Science Definition Meeting

SOLAR-C Concept

- Two options are under study:
 - Option-A (so-called Plan-A):

Exploration of origin of the solar magnetic activity cycle from an out-of-ecliptic orbit by X-ray/magnetic field/helioseismic observations

Toward understanding the solar magnetic activity cycle

 Option-B: high-spatial resolution observations of the dynamic Sun with enhanced spectroscopic and polarimetric capabilities

Toward understanding the magnetic-field dissipation processes

Launched by JAXA H2A rocket

Solar Magnetic Activity Cycle

- How are magnetic fields created in the sun? (Dynamo)
- Internal flows, behavior of polar magnetic fields, and polarity reversal at poles from out-of-ecliptic observations may be important.

Option-A

Exploration from out-of-ecliptic orbit

- <Toward understanding the solar dynamo>
- Surface magnetic activity in polar regions
- Surface/internal flow fields in polar regions
- Search of tachocline regarded as a source region of strong magnetic fields
- <Exploration from Vantage Point>
- · Search of solar winds in polar coronal holes
- Total irradiance measurements from out-ofecliptic orbit; The Sun as a star
- Imaging of CMEs and solar wind/CIR shock structures

Option-A Target Final Orbit

The target orbital period of 1 yr, synchronized with Earth

Rotation and Meridional Flows

- Basic quantities to understand the solar dynamo
- cannot be determined from observations in ecliptic plane for high-latitude and polar regions
- Need out-of-ecliptic helioseismic observations to fill up for all latitude regions

Exploration of B at the base of CZ

- Many solar physicists believe that magnetic flux tubes are produced at tachocline.
- Exploration of magnetic flux tube at tachocline by helioseismic observations

Polar Coronal Activity

2006/11/23 00:47:25 XRT Al_poly filter exp. 16385msec

Hinode XRT

- Dynamic polar regions of the sun
- Highly transient jets
- More stable plumes in EUV images
- Source of high-speed solar wind

Solar Wind

Jupiter swing-by Sun earth Ulysses

- How is the high-speed solar wind from polar coronal holes accelerated?
- Measurement of global magnetic fields in polar coronal holes, flows in transition region and low corona, and the wind speed may provide the linkage between sun and inner heliosphere.
- We may be able to see the Parker spiral of solar winds by a heliospheric imaging.

Total Solar Irradiance (TSI) from out-of-ecliptic plane

Understand the sun as a star

Solar irradiance TSI cycle variation ~0.1% p-p

Figure from PMOD WRC homepage

Photometric variation of solar type stars

- Solar type stars show larger amplitude photometric variations, (though the number of sample is small...)
- Is it due to a difference in viewing angle to activity belts?

Total Solar Irradiance (TSI) from out-of-ecliptic plane

from Schatten 1993, JGR, 98, 18907

 Interesting to measure TSI from an orbit with inclination >40 deg
Latitudinal variation of TSI

- Overall effects of sunspot blocking, facular brightening near the limb, and change of activity-band location when viewing from an out-of-ecliptic plane
- Amplitude over the solar cycle will increase at the max viewing angle from Plan-A S/C. How large? The Sun is a special mild star for life to adjust its irradiance change?

A view at latitude 40 deg from solar equatorial plane and location of the activity belt (-30 < θ < 30 deg)

Direct Imaging of Density Pattern in Solar Wind Structures

Direct Imaging of Density Pattern in Solar Wind Structures

Density difference in SW structures detectable by a slightly-modified a STEREO HI from the Plan-A orbit

in ~4 σ significance level to the zodiacal-light background by 6 hours exposure (Preliminary)

Solar-wind density structures from MHD simulation as observed at an out-of-ecliptic plane

Other non-solar observations

- Zodiacal light or interplanetary dusts
 - Photometric measurements have only been done from Earth, near-Earth orbits, and inner-heliospheric orbits (by Helios) in the ecliptic plane.
 - Photometric measurements in near-infrared wavelength may access the age of re-ionization of Universe
 - An in-situ measurement of colliding dusts particles as infrequent plasma detection (Ulysses, Japanese "Nozomi" mission, ...)
- Anomalous cosmic rays in Heliosphere
 - See Isobe-san's presentation

Option-A: Model Payload

Each has a space heritage/a slightly modified version in missions that have been flown.

- Visible-light Magnetic-field and Doppler imager
 - full-disk observations
 - Internal flow structures, mag. fields, convection, .. in polar regions
- X-ray/EUV telescope
 - Coronal dynamics in polar regions, synergy with coronal imagers, observing the sun around the earth, in stereo-scopic views
- EUV imaging spectrometer
 - Flow/wave structures in polar regions (plume, solar wind)
- Total irradiance monitor
 - Latitudinal distribution of surface irradiance
- Others (Options at present)
 - Heliospheric imager: CME imaging, solar wind/CIR shock structures
 - Zodiacal-light photometer: distribution of interplanetary dust
 - In-situ instruments (magnetometer, dust counter,, etc.)
- Total mass 130 kg (tentative allocation for design activity)

Requirements for S/C System Design

- Sojourn time >40 days (TBD) for a solar latitude of >30 deg (TBD)
 - Target of max. latitude : ~40 deg (higher is better, of course)
 - Need to define these numbers clearly from evaluation through helioseismic model calculations
- Distance to the Sun in the final orbit: 1.0 AU
 - Minimum distance to the sun is 0.7 AU from the thermal-design point of view
 - Maximum distance to the sun is not defined because of a possibility of ballistic orbits by Jupiter swing-by
- Use 7 deg tilt angle of the solar rotation axis to the ecliptic plane
- Duration of cruise phase to the final orbit: ~5 years
 - Need 40-days (TBD) observations near perihelion/aphelion points in the cruise phase
- Payload weight: 130 kg
- Data recording rate: >100 kbps ave.
- Mission life:

cruise phase $N_0 \sim 5 \text{ yr} + N_1 \text{ yr} + \text{extended duration } N_2 \text{ yr}$ (total $\sim N_3 \text{ yr}$)

Orbit Design & Option-A Spacecraft

 Dr. Kawakatsu explains candidate orbits and spacecraft system for the Option-A mission.

Option-A orbit

- Near-Earth orbit using ion engine & Earth swing-by
 - Higher-priority orbit for Solar Physics
 - High-data rate observations required for magnetic and helioseismic research
 - Limited imaging observations of the Sun during the use of ion engine if there is no active pointing mechanism on the payload
 - Launch opportunity: every 0.5 year
 - 40° inclination from solar equatorial plane,1AU distance, synchronized with Earth
 - It takes ~5 yr to achieve the target orbit.
- Jupiter swing-by + Earth swing-by (ballistic orbit)
 - Lower-data rate observations and lower spatial resolution before achieving target orbit
 - Observations are always possible except for swing-by operation
 - Launch opportunity: every ~1.1 yr
 - <u>36-40°</u> inclination from solar equatorial plane,1AU distance, synchronized with Earth
 - Shorten the orbital period by Earth swing-by. It takes ~7 yr to achieve the orbital period of 1 yr.

How is the solar poles seen as a function of inclination angle?

i : inclination angle from solar equatorial plane

Ion engine + Earth swing-by

Technical Issues

in spacecraft system for SEP Option

- Option-A escaping from ecliptic plane
 - Kick-motor: no suitable kick motor for H II-A interplanetary mission
 - High power systems (~7 kW)
 - need high-efficiency power supply for operating ion engines toward further reduction of the S/C weight
 - need light weight solar array paddle (being developed in JAXA)
 - High telemetry rate in interplanetary space (~100 kbps data recording rate @0.5AU set as minimal required level)
 - not a high rate for NASA's S/C missions (slightly better in STEREO)
 - a key issue to enhance scientific return from helioseismology
 - needs downlink stations for deep space at both northern and southern hemispheres
 - High thrust ion engines (120 mN max)
 - endurance test of ENG model being performed at JAXA/ISAS
 - Heat exhaust from high-heat-generating components
 - found to be little problems after a thermal design for a model orbit

Technical Issues in spacecraft system for Jupiter Option

- Option-A escaping from ecliptic plane
 - Kick-motor: no suitable kick motor for H II-A interplanetary mission
 - High power systems (TBD kW) for operating at far Sun-S/C distance
 - needs high-efficiency power supply for operating ion engines toward further reduction of the S/C weight
 - needs light weight solar array paddle (being developed in JAXA)
 - High telemetry rate in interplanetary space (~100 kbps data recording rate @0.5AU set as minimal required level)
 - not a high rate for NASA's S/C missions (slightly better in STEREO)
 - a key issue to enhance scientific return from helioseismology
 - needs downlink stations for deep space at both northern and southern hemispheres
 - High thrust ion engines (120 mN max)
 - endurance test of ENG model being performed at JAXA/ISAS
 - Heat exhaust from high-heat-generating components
 - found to be little problems after a thermal design for a model orbit

Provisional Schedule

- If Option-A needs to look at the polar polarity reversal in 2020's in a good observing condition, the launch of 2017/2018 is required in SEP option.
- In the baseline Jupiter option, the polar reversal may occur before S/C reaches the maximum inclination.

Synergy among multiple spacecrafts

3D Scanning of Heliosphere by Multiple Spacecrafts

Figure from Heber & Cummings (2001)

Synergy between Option-A and SO 3D Scanning of the Sun by Multiple Spacecrafts

One spacecraft cannot cover both polar regions at one time.

Summary

- SOLAR-C Option-A is a mission to look at the Sun from a high-inclination out-of-ecliptic orbit.
- We will observe features all over the latitudes on the sun and a wide rage of heliospheric latitudes at ~1AU:
 Magnetic fields, convection, internal rotation, meridional flows from polarimetric and helioseismic observations, activity of upper atmosphere, source region of solar wind, and interplanetary in-situ measurements.
- Science in Heliospheric Physics has not been well discussed with heliophysics group.
- There are practical solutions for a spacecraft to enter a 40-deg inclination orbit with1-yr orbital period.
- The orbit with ion engines may be better at a glance, but there need many technical challenges.