Summary on Option-A

H. Hara (NAOJ) 2010 Mar 11

Prime Mission Description

• Explore the origin of solar magnetic activity cycle from out-of-ecliptic observations

(observations: helioseismic, total irradiance, TR & coronal imaging/spectroscopy, and heliospheric, and in-situ observations)

Option-A related Sub-WG Activity

- Helioseismology and Dynamo sub-WG
 - Reported by Sekii, Brun, Kosovichev, Appourchaux(Solar Orbiter), Finsterle (TSI)
- Engineering (Orbit and Spacecraft) sub-WG
 - reported by Kawakatsu

Important steps given from the previous science meeting. Orbit & S/C are becoming feasible.

- UV/EUV sub-WG
 - Reported byTeriaca
- X-ray telescope sub-WG
 - Reported by Korreck
- Other (heliospheric physics)
 - Reported by Isobe, Hara

Can we send S/C to the vantage point ? Orbit & Spacecraft

- Two orbit candidates shown with investigations of S/C feasibility.
- Final orbit: 1 yr period, 1.0 AU circular

40 deg max heliosphehic-latitude rotating the Sun synchronized with Earth

- SEP Option: technical challenges driven by presence of ion engines. Maybe limited observing opportunity in the first few years.
- Jupiter Option: probably conservative orbit methodology. Limited data rate in the first 4 years.
- Which will be preferable from various points including the technical readiness? This is an important input to engineering group.

Helioseismology & Dynamo

- Expected outcome
 - Meridional flow
 - where and how the flow sinks
 - How it evolves in the 11-yr activity cycle
 - Differential rotation
 - all latitudes covered
 - Convective structures and its evolution in high latitudes
 - Motions of magnetic structures in high latitudes
 - Polar field evolution

Discussions (1)

- Will it really work for advancing the resolution of the dynamo problem?
 - No question! Selection of the final S/C orbit is appropriate for the dynamo issues.
 - If the signature of magnetic flux tube in CZ is found, it will be an additional big jump.

Discussion (2)

- Multi-instrument helioseismology to first see the deep convection zone in a good accuracy. Possible?
 - Timing is not a problem [done by SOHO + obs. at Earth]
 - Spatial co-registration (knowledge of geometry for two spacecrafts) not a problem.
 - Minimize instrumental effects by using the same observables and the same line
- Can we use an imaging photometer for helioseismology? [not preferred]
 - S/N is about 10 times lower in intensity
 - More modes observed in velocity

Discussion (3)

- Can a huge telescope in ecliptic be replaced regarding the Option-A science?
 - Short time coverage near polar regions
 - Field-of-view is small to see the deep CZ
- Solution of spacecraft at L5 (L4) reasonable to do helioseismology?
 - [for some specific problem]
 - Large angle helioseismology limited near equatorial tachocline, no gain in high latitude regions

Discussion (4)

- Why 40 deg?
 - Latitude of 0-60 deg covered with MDI
 - 30 deg appears to be the minimum number, but not correct (see Sekii's presentation)
 - For spatial integration, $30+\alpha$ deg required in helioseismology
 - What α is actually needed? α =10 deg is a value from helioseismology

Discussion (5)

- Difference with Solar Orbiter
 - Continuous observations at any orbital phase in the final orbit
 - Fast arrival at high inclination orbit for a S/C mission life
 - Duration of observations at inclination above 30 deg:
 >60 days for each hemisphere vs ~20 days in SO
 - Higher telemetry rate by a factor of >7 at least for helioseismic observations. Much higher rate is possible when S/C approaching to the Earth at lower latitudes
 - Contain TSI observation
 - Thermally stable observing conditions at 1 AU
 - Complementary mission

Discussion (6)

- Difference with SDO
 - Polar regions covered
 - Complementary mission

Discussion (7)

- Other science topics
 - Thank you for inputs by Luca Teriaca on solar wind, by Kelly Korreck on the coronal imaging
 - But some topics are raised from Option-A supporters
 - Heliospheric imaging observations by H. Hara and H. Isobe who inspired by STEREO-HI observations
 - Cosmic ray observations by Hiroaki Isobe who inspired by Ulysses results
 - Need to define the role of in-situ measurements more clearly

Toward Mission Proposal for Option-A

- Prime description of the Mission
 - Science goals
- Payload to achieve the science goals
- Technical feasibility and readiness
- International Option-A Team framework