The 2nd Solar-C Science Definition Meeting March 11-14, 2010@ISAS, Sagamihara, Japan

Space Weather Study - Flare Forecast -

Kanya Kusano

Solar Terrestrial Environment Laboratory Nagoya University

The Process of Space Weather

The Sun Flare, CME

Interplanetary Geo-space ICME, Shocks Storm, Sub-storm, etc

Why should we forecast flares ?

- As the Space Weather Forecast
- To evaluate the level of scientific understanding

When

How

Two types of onset process

Triggered or Critical

Triggered phenomena

Moor et al. 2001

tether cutting model flux cancellation model

Critical phenomena

ideal kink model catastrophe model

Method 1: Machine-learning

- Automated Solar Activity Prediction:
 - Space Weather Prediction Center
 - Colak & Qahwaji 2009, HN Wang et al. 2008

Figure 2. Machine-learning system for flare prediction.

Colak & Qahwaji 2009

Fig. 1. The 3-component McIntosh classification, with examples of each category.

Skill Score

$$SS = \frac{n_{ff} - (n_q - n_{qq})}{n_f}$$

Skill Score of SWPC for X flare

1day	2day	3day	year (events)
0.112	-0.147	-0.171	2006 (4)
0.242	0.147	0.127	2005 (13)
0.052	-0.001	-0.044	2004 (9)
0.200	0.093	0.076	2003 (17)
-0.037	-0.050	-0.033	2002 (12)
-0.061	-0.034	-0.006	2001 (18)

Flares and Subsurface vorticity

Komm & Hill 2009 JGR

Method 2: Correlative Analysis

To find magnetic quantity, which is most correlated to the onset of flares.

Leka & Barnes 2007, Yamamoto & Sakurai 2009

Description	Formula	Variable
Atmo	ospheric Seeing	
Median of the granulation contrast	$s = median(\Delta I)$	S
Distributio	n of Magnetic Fields	
Moments of vertical magnetic field Total unsigned flux Absolute value of the net flux Moments of horizontal magnetic field	$B_{z} = \boldsymbol{B} \cdot \boldsymbol{e}_{z}$ $\Phi_{\text{tot}} = \sum B_{z} dA$ $ \Phi_{\text{net}} = \sum B_{z} dA $ $B_{h} = \left(B_{x}^{2} + B_{y}^{2}\right)^{1/2}$	$\mathcal{M}(B_z) \ \Phi_{ ext{tot}} \ \Phi_{ ext{net}} \ \mathcal{M}(B_h)$
Distribution	n of Inclination Angle	
Moments of inclination angle	$\gamma = \tan^{-1}(B_z/B_h)$	$\mathcal{M}(\gamma)$
Distribution of the Magnitude of th	e Horizontal Gradients of the Magnetic Fields	
Moments of total field gradients Moments of vertical field gradients Moments of horizontal field gradients	$\begin{aligned} \nabla_h B &= \left[(\partial B/\partial x)^2 + (\partial B/\partial y)^2 \right]^{1/2} \\ \nabla_h B_z &= \left[(\partial B_z/\partial x)^2 + (\partial B_z/\partial y)^2 \right]^{1/2} \\ \nabla_h B_h &= \left[(\partial B_h/\partial x)^2 + (\partial B_h/\partial y)^2 \right]^{1/2} \end{aligned}$	$\mathcal{M}(abla_h B) \ \mathcal{M}(abla_h B_z) \ \mathcal{M}(abla_h B_h)$

TABLE 1					
PARAMETERS	USED	IN	THE	DISCRIMINANT	ANALYSIS

Distribution of Vertical Current Density

Moments of vertical current density Total unsigned vertical current Absolute value of the net vertical current Sum of absolute value of net currents in each polarity Moments of vertical heterogeneity current density ^a Total unsigned vertical heterogeneity current Absolute value of net vertical heterogeneity current	$J_{z} = C(\partial B_{y}/\partial x - \partial B_{x}/\partial y)$ $I_{\text{tot}} = \sum J_{z} dA$ $ I_{\text{net}} = \sum J_{z} dA $ $ I_{\text{net}}^{B} = \sum J_{z}(B_{z} > 0) dA + \sum J_{z}(B_{z} < 0) dA $ $J_{z}^{h} = C(b_{y} \partial B_{x}/\partial y - b_{x} \partial B_{y}/\partial x)$ $I_{\text{tot}}^{h} = \sum J_{z}^{h} dA$ $ I_{\text{net}}^{h} = \sum J_{z}^{h} dA $	$\mathcal{M}(J_z)$ I_{tot} $ I_{\text{net}} $ $ I_{\text{met}}^B $ $\mathcal{M}(J_z^h)$ I_{tot}^h $ I_{\text{net}}^h $
Distributio	on of Twist Parameter	
Moments of twist parameter ^b Best-fit force-free twist parameter ^b	$\begin{aligned} \alpha &= CJ_z/B_z \\ \boldsymbol{B} &= \alpha_{\rm ff} \nabla \times \boldsymbol{B} \end{aligned}$	$\mathcal{M}(lpha) \ lpha_{ m ff} $
Distributio	on of Current Helicity	
Moments of current helicity ^c Total unsigned current helicity Absolute value of net current helicity	$h_c = CB_z(\partial B_y/\partial x - \partial B_x/\partial y)$ $H_c^{\text{tot}} = \sum h_c dA$ $ H_c^{\text{net}} = \sum h_c dA $	$\mathcal{M}(h_c) \ H_c^{ ext{tot}} \ H_c^{ ext{net}} $
Distribut	ion of Shear Angles	
Moments of 3D shear angle ^d Area with shear $\geq \Psi_0$, $\Psi_0 = 45^\circ$, 80° Moments of neutral line shear angle Length of neutral line with shear $\geq \Psi_0$ Moments of horizontal shear angle ^e Area with horizontal shear $\geq \psi_0$	$\begin{split} \Psi &= \cos^{-1}(\boldsymbol{B}^{p} \cdot \boldsymbol{B}^{o} / B^{p} B^{o}) \\ A(\Psi > \Psi_{0}) &= \sum_{\Psi > \Psi_{0}} dA \\ \Psi_{\text{NL}} &= \cos^{-1}(\boldsymbol{B}^{p}_{\text{NL}} \cdot \boldsymbol{B}^{o}_{\text{NL}} / B^{p}_{\text{NL}} B^{o}_{\text{NL}}) \\ L(\Psi_{\text{NL}} > \Psi_{0}) &= \sum_{\Psi_{\text{NL}} > \Psi_{0}} dL \\ \psi &= \cos^{-1}(\boldsymbol{B}^{p}_{h} \cdot \boldsymbol{B}^{p}_{h} / B^{p}_{h} B^{o}_{h}) \\ A(\psi > \psi_{0}) &= \sum_{\psi > \psi_{0}} dA \end{split}$	$\mathcal{M}(\Psi) \ A(\Psi > 45^\circ), \ A(\Psi > 80^\circ) \ \mathcal{M}(\Psi_{ m NL}) \ L(\Psi_{ m NL} > 45^\circ), \ L(\Psi_{ m NL} > 80^\circ) \ \mathcal{M}(\psi) \ A(\psi > 45^\circ), \ A(\psi > 80^\circ)$
Distribution of Photosphe	eric Excess Magnetic Energy Density	
Moments of photospheric excess magnetic energy density ^d Total photospheric excess magnetic energy	$\rho_e = (\boldsymbol{B}^p - \boldsymbol{B}^o)^2 / 8\pi$ $E_e = \sum \rho_e dA$	$\mathcal{M}(ho_e) \ E_e$

NOTES.—The $\mathcal{M}(x)$ denotes taking the first four moments of the distribution of the variable *x*: the mean \overline{x} , the standard deviation $\sigma(x)$, the skew $\varsigma(x)$, and the kurtosis $\kappa(x)$. The *C* indicates physical constants that are included in the calculation but not listed here for clarity. ^a Zhang (2001). ^b Leka & Skumanich (1999). ^c Abramenko et al. (1996); Bao et al. (1999). ^d Wang et al. (1996). ^e Hagyard et al. (1984), although B_h is used here, rather than B_{\perp} .

Evaluating the performance of solar flare forecasting methods, Barnes and Leka 2008 (M&X class within 1d)

TABLE 1

SUCCESS RATES AND SKILL SCORES FOR THE SAMPLE PARAMETERS

Parameter	Success	Heidke	Climatological
	Rate	Skill Score	Skill Score
Climatology	0.908	0.000	0.000
Φ_{tot}	0.922	0.153	0.197
E_e	0.916	0.081	0.231
R	0.922	0.144	0.242
B_{eff}	0.913	0.072	0.220

Method 3: 3D Model

Chromospheric model is needed

Photospheric data is NOT consistent with NLFF equation.

"pre-conditioning" has to be applied to photospheric data.

AR 10930 (2006 Dec. 13)

NLFF model

Observation

SOT

XRT

2006_12_12 03:50 UT

Total Magnetic Energy Magnetic Free Energy

8h prior to the flare

2006_12_12 17:40 UT

Total Magnetic Energy Magnetic Free Energy

2006_12_13 07:00 UT

Total Magnetic Energy Magnetic Free Energy (J)

pre-flare brightening and magnetic field

2006.12.13 01:42:37

Numerical experiment of the flare

Small forcing on the foot-point is able to trigger energy liberation, which corresponds to flare.

X-ray Ejections & X-ray Wave

courtesy of Asai-san

Extension to CME model

- Solar wind model
- CME model
- ICME model
- Magnetosphere model

Summary

- The methods to forecast flares is now being developed in terms of several algorithms.
- The data-driven MHD model using Hinode's vector magnetogram is very promising to reproduce flare activity as well as to evaluate the "vulnerability" of active region. However, it is still premature to predict when flare occurs.
- Solar flare might be a triggered process rather than a critical process. So, we probably need higher-cadence data to find the real trigger.
- Solar-C/B could be a powerful tool for forecasting flare. However, many experiments to do using Hinode's data is not completed yet.

Inversion of the Induction eq.

LCT

Kusano et al. 2002

$$\frac{\partial \mathbf{B}_{z}}{\partial t} = \left[\nabla \times (\mathbf{V} \times \mathbf{B}) \right]_{z}$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) \xrightarrow{\partial_{z}} \vec{N} \mathcal{E} \mathcal{B}$$
Fisher et al.2010

