Next Generation X-ray Telescope: Science and Possible Instrumentation with Grazing Incidence Photon-Counting Imager

> Taro Sakao ISAS/JAXA and The NGXT sub-WG

Grazing Incidence Imager

- Much of the sub-WG discussion on GI have concentrated on photon-counting-type imager.
 - NI discussion made by Shimojo-san.
 - No advantage present for photon-counting NI imager because of poor energy resolution of Si detectors for EUV wavelengths.
 - → Spectroscopic investigation of hot plasmas can only be performed by GI.
 - Photon-integration-type GI (direct extention of Yohkoh/SXT and Hinode/XRT) yet to be investigated in great detail.

(H. Warren)

X-ray Spectra from the Sun (Model Output with CHIANTI V5)

X-ray Spectra from the Sun (Model Output with CHIANTI V5)

GI Telescope: Science Targets

- Soft X-ray corona in <1 10 keV
 Discovery space with imaging spectroscopy
- Imaging spectroscopy of hot (>5 MK) plasmas in active regions
 - Can never be investigated with EUV spectroscopy
 - What is the highest temperature in ARs?
 → Heating and thermal energy transport

Active Regions and Quiet Sun

DEM determination

* DEM above 5 MK not known.

High-Temperature Components across Active Regions and Quiet Sun

Hot plasmas with temperature 5–32 MK (most likely >10 MK) present not only in Active (X-ray bright) Regions but also in the Quiet Sun and near the poles, even during solar minimum.

- \rightarrow How are they heated?
- \rightarrow How are they maintained? (Ishibashi 2008)
- \rightarrow What DEM?

log T [K]

GI Telescope: Science Targets

• Flares

- Spectral features in the global magnetic structure associated with reconnection
 → Investigation of shock
- Spatial distribution and temporal evolution of non-thermal X-rays in the early phase of flares.
- Fe line mapping for 20-30 MK plasmas
- Accelerated particles: Manifest themselves as NT deviation from ambient thermal plasmas
 - \rightarrow Thermal + Non-thermal emission
 - \rightarrow <1 10 keV energy range essential

Shock Acceleration of Electrons in Cosmic Plasmas

Possibilities: Particle Acceleration Site

(Tsuneta, Ap. J. 1997)

Non-Thermal Imaging

Larger image dynamic range with focusing optics as comapred to Fourier synthesis type imagery.

 \rightarrow Suited for observing NT X-rays in the corona

E

F

Acceleration at the loop top

Acceleration at the reconnection point

"Hard X-ray Microflares Down to 3 keV" Krucker et al. 2002, Sol. Phys., 210, 445

They analyzed the B6 flares observed by the RHESSI and found that the non-thermal spectrum (power-law) continue to around 6 keV.

(Asai et al. 2009: Ap. J. 695, 1623-1630) Asai et al. (in press): 2002-July-23 X4.8 flare

- The non-thermal signal from the pre-flare stage of the X4.8 flare.
- The source is in corona.
- The loop top source is non-thermal based on the HXR and Radio Observations.

Re-analysis (2002-July-23 X4.8 / preflare)

 Table 5.3-1:
 Draft scientific specification needed for the photon-counting telescope.

Item	Description	Remarks
Optics	Grazing incidence	
Angular Resolution (Pixel Size)		Angular size of a pixel
For photon counting: 5 arcsec		
For photon integration: 0.5 arcsec		
Temporal Resolution		
For photon counting: AR – 30 s, Flare – 10 s		
For photon integration: TBD		
Energy Range	1–10 keV, with sensitivity below 1 keV desired.	Low-energy sensitivity depends on available detector. Irridium coating for the mirror indespensable to attain high sensitivity for keV X-rays.
Energy resolution		
For photon counting	Readout noise: 5 e ⁻ (TBD) Fano-limited resolution (F=0.12) (TBD)	
For photon integration	N/A	

GI Telescope

- Employ CMOS imager sensor as the focal-plane array
 - Sarnoff CMOS sensor consired to be the baseline device.
- Use of "segment mirror"

Instrument Features (Preliminary)

- Focal Length & Plate Scale : ~4 m and ~0.4"/8µm pixel, respectively •
- X-ray Mirror: •
 - Walter-I like GI segment mirror (1/8 segment of a cylinder)
 - Coating with Ir mandatory to increase high-energy response
- Grazing angle: 0.9 deg. (TBD; investigation ongoing between 0.45° and 1.8°) •
- Exposures: •
 - Either Photon Counting mode or Photon Integration mode
 - P-C to be performed with ROI size of ~256x256 pixels
- Focal Plane Filters:
 - Attenuation for photon counting exposures
 - Analysis filters for photon integration exposures
- Detector: •
 - Sarnoff CMOS image sensor (front illuminated) considered as the baseline
 - 2k×2k (TBD) 8 µm pixel size
- Frame Readout Rate: •
 - 1000 fps for photon counting mode
 - >=10-bits A/D conversion

- Data Output Rate:
 - 110 Mbps for 512x512 ROI
 - 6.9 Mbps for 128x128 ROI

(Preliminary; no attempt in reduction)

2k x 2k

Assumed FI/BI QE Profiles

(N.B. Deep edge at ~< 2 keV for & CMOSsisedue to small (5 µm) Si thickness.)

Sample Active Region (NOAA AR 10978 on 10 Dec. 2007)

XRT Med-Be 16.0s; 16:35:47 UT

Expected full-Sun image with FI CMOS (ignoring FOV size,) - PC-GI_Science_Performance.ppt 30 October 2009 [Rev. A]

Presence of Partial-Opening in Each Pixel

Exploring Active Regions with NGXT: Science Cases

Summary

Photon Counting GI X-ray Telescope:

- Photon-counting Mode:
 - Moderate angular resolution but should be able to provide new information on:
 - Physics of flares
 - Thermal distribution across ARs
 - Spectroscopic imaging observations of the hot corona in soft X-rays
- Photon-Integration Mode:
 - Imaging of the hot (>~1 MK) plasma with the highest angular resolution (0.5") as GI
 - Temperature diagnostic with filter-ratio
 - Context information for photon-counting data