

Solar-C and the Sun-Earth Connection

Len Culhane

Mullard Space Science Laboratory University College London

Some Key Areas for the Sun-Earth Connection

- Solar activity, leading to CMEs and flares, and the solar wind are the keys to the Sun-Earth connection – a subset of the Sun's role in the Heliosphere
- Magnetic flux generated at the bottom of the convection zone emerges through the photosphere. Need to:
 - clarify nature of emerged magnetic structures and flux rope formation
 - identify sub-photospheric magnetic structures
- CME launch process and related magnetic configurations must be understood
 - on-disc and coronal signatures (filaments, dimming, EIT waves, sigmoids) are important
- CMEs remove magnetic helicity from the Sun
 - a tool for eruption forecasting?
- Interplanetary CMEs (ICMEs) and Magnetic Clouds (MCs) interact with near-Earth environment
 - clarify their magnetic and compositional relationship to the original CME
- We will briefly outline the above topics in relation to the Solar-C plans

Wednesday 19th November, 2008

Solar-C Science Definition Meeting – ISAS/JAXA

Flux Emergence at Photosphere

Strauss and Zwann, 1999 courtesy of Lidia van Driel's UCL undergraduate lectures!

- Emergence of a bipolar plage region
 - sequence of polarity emergence
 - H α filament system: v_{up} < 10 km s⁻¹; v_{down}< 50 km s⁻¹; 20 min lifetime
 - opposite polarities move apart: v < 2 km s⁻¹ first half hour; $v \sim 1.3-0.7$ km s⁻¹ next six hours
- Scenario consistent with the emergence of a fragmented Ω -shaped loop
 - still connected to the toroidal flux in the dynamo (tachocline) region
- See recent Hinode result by Okamoto et al. 2008

[±]UCL

Hinode Observation of an Emerging Flux-rope

- Okamoto et al., 2008 used a time series of vector fields below a prominence
- Horizontal field along polarity inversion line (PIL) changed direction
- Horizontal field region was blueshifted
- Upper panels show angle between PIL and horizontal field
 - θ positive: normal
 - θ negative: inverse
- Lower panels show schematic of emerging flux-rope
- These are clearly subtle and difficult observations but definitive results are needed

Flux Emergence Below the Surface (Kosovichev, 2007)

- Subsurface region of anomalous flow velocity suggests emerging Ω loop
- Need to identify fluxrope structures to as great a depth as possible - ideally to tachocline
- Deploy optimum Helioseismology approach

Compelling results need to be achieved for the solar activity latitude range

CME Launching - Dimming Event of 12-May-1997

- Features include:
 - twin dimming regions
 - simple magnetic structure
 - LDE flare GOES class C 1.3
 - brightening along and shrinkage of north polar coronal hole boundary
 - fiament eruption
 - coronal wave
 - full Halo CME
 - associated magnetic cloud at Earth

• Well-studied event (Thompson et al., 1998, Webb et al., 2000, Zhukov and Auchére, 2004, Attrill et al., 2006)

Wednesday 19th November, 2008

CME Models

- Single class of models discussed here
 - ideal MHD instabilities
- Many other energy storage and release models exist
- Kink Instability
 - occurs when twist in flux rope exceeds a critical value of 2.5 π (Priest & Hood, 1979)

t=0.

- driven by conversion of *twist* into *writhe*
- example observed by TRACE in 2004, Nov 10
- Torus instability
 - occurs if the overlying field drops sufficiently fast with height.
 - driven by hoop force of a flux rope (Lorentz force of a current ring)
- Kink instability may precede Torus eruption

Williams et al., (2005)

CME Models

- All the models require understanding the competition between magnetic pressure forces (expansion) and magnetic tension forces (restraining)
- Difficult to tell which model is correct
 - combination of different models involved?
- Expected observational differences between the models are subtle
- Hard to distinguish between e.g. a pre-eruption flux rope (flux cancellation; Linker et al., 2003) and a collection of strongly sheared field lines (breakout; Antiochos et al., 1999)
- After eruption both models have a flux rope
- Flux ropes may also emerge from below the photosphere
- Models are not yet able to predict observable quantities
- Require study of CME acceleration sites, pre-CME structures, pre flare indicators
 - clarify energy buildup
 - understand energy release mechanism

Role of Magnetic Helicity

- Magnetic Helicity, H is a globally conserved quantity that can describe the stress present in a complex magnetic configuration
- Helicity is removed from the corona to the Interplanetary Medium (IPM) by CMEs
 - total helicity content of an Active Region may indicate CME productivity or even show threshold behaviour
- Determine H_r by e.g. linear force-free extrapolation of photospheric field to the corona

 $ec{
abla} imes ec{B} = lpha ec{B}, \quad lpha = ext{constant}$

where α is determined from a best fit to coronal loops

• H_r is then determined from the relation

$$H = \alpha \sum_{n_x=0}^{N_x} \sum_{n_y=0}^{N_y} \frac{|\widetilde{B}_{n_x,n_y}^2|}{(k_x^2 + k_y^2)^{3/2}}$$

with summation over the spatial Fourier modes of the extrapolated field

Wednesday 19th November, 2008

Compare ΔH_{corona} with $H_{Magnetic Cloud}$

AR 7912, 14 Oct. 1995

before CME

- Remote sensing but global observation - magnetograms + coronal loops + extrapolation $\rightarrow \Delta H_{corona}$
- Results so far are suggestive but qualitative

time (h) In situ but local observation - measure three B components + flux rope model

For future, use non-linear force-free extrapolation with vector B-field measurements

Wednesday 19th November, 2008

Solar-C Science Definition Meeting – ISAS/JAXA

In-Situ Observations of ICMEs

- CMEs are called ICMEs in Interplanetary space
- CMEs are observed in situ as transients in IP space with changes to ambient physical parameters:
 - stronger magnetic field showing a twisted flux rope structure
 - *higher density* and *lower temperature* than the surrounding solar wind.

[•]UCL

In-Situ Observations of ICMEs

- Magnetic Field
- Strength increase >10 nT. (Hirshberg & Colburn, 1969)
- Smooth rotation of the magnetic field direction (Klein & Burlaga, 1982)
- Lack of fluctuations

(Pudovkin et al., 1979)

- Discontinuities at ICME boundaries (Janoo et al., 1998)
- Plasma
- ~ 50% of ICMEs are associated with IP **shocks**
- Extreme density decrease ≤ 1 cm⁻³ (Richardson et al., 2000)
- Proton temperature decrease (Gosling et al., 1973)
- Low plasma β (ratio of gas to magnetic pressure)
- Magnetic Cloud (MC)
- Specialist title given to an ICME when the core can be unambiguously identified (Klein & Burlaga, 1982)

In-Situ Observations of ICMEs

Composition

- The abundances of elements and their charge states tend to rise within ICMEs
 - characteristic of having originated in the Sun's Corona.
 - \rightarrow Enhanced α /proton ratio: He²⁺/H⁺ > 8%
 - → Over 80% of MCs have elevated O and Fe charge states: e.g. $O^{7+}/O^{6+} > 1$
 - \rightarrow Occurrence of He⁺: He⁺/He²⁺ > 0.01
 - → Enhancements of Fe/O
 - \rightarrow Unusually high ratios of ³He/⁴He
- ACE example for near-Earth MC shows:
 - highest ion stages at front, lower at rear
 - coronal followed by chromospheric material
- However this is a simple example
 - exact composition can be unique (Gloeckler et al., 2005)

Fe Charge State Distributions observed with ACE

Lepri et al., (2001)

Relevance of Solar-C

- Subset of Sun-Earth connection topics has been reviewed that includes
 - Search for evidence of existence of flux tubes above and below the photosphere
 - CME Launch processes
 - Measurement and use of magnetic helicity
 - In-situ registration of arriving ICMEs/MCs
- Emerging flux rope studies require high quality vector magnetograms with good cadence and a field of view greater than AR size to be available in the AR latitude range
- No clear advantage for Plan A
- Formation of flux ropes at the tachocline **and** their passage through the convection zone

- high latitude observations may allow flow and anomalous velocity studies to tachocline

• Posible Plan A advantage; SDO/HMI and Plan B abilities to be quantified Wednesday 19th November, 2008 Solar-C Science Definition Meeting – ISAS/JAXA

[±]UCL

Relevance of Solar-C (continued)

- CME launch process needs
 - understanding of the flux rope formation process
 - identification of role of pre-launch phenomena
 - observation of the associated disc and low corona signatures
 - multiple views of CME expansion
 - \rightarrow implies a heliospheric imager or coronagraph for Plan A
- Plan A and Plan B both have role
 - Plan A allows CME tracking by contributing to multiple views
 - Plan B allows detailed views of the pre-launch processes

Relevance of Solar-C (continued)

- Quantitative magnetic helicity measurements require high quality vector magnetic field measurements good cadence and a field of view significantly greater than AR size to be available in the AR latitude range
- Automated NLFF magnetic field extrapolation code also required
- Assuming SDO AIA/HMI capability exists, no advantage for Plan A
 need better understanding of Plan B capabilities
- In-situ sampling of ICMEs/MCs at range of latitudes requires
 - Sensitive magnetometer measurements
 - Solar wind and ICME electron/proton plasma analyser
 - Plasma composition measurements by ion mass spectrometer
- Plan A sampling advantage if spacecraft has these instruments
 16

Wednesday 19th November, 2008

Solar-C Science Definition Meeting – ISAS/JAXA

Thank You