Solar Pole Research at NSO

J. Harvey & NSO Staff

Terra Incognita

Justification

- Strong influence on heliosphere
- Nearly permanent coronal hole
- Large scale flows are different
 - Small rotational effects
 - Convergence of meridional flow
- Help diagnose solar cycle dynamo

What to Observe?

- Motions
 - Rotation
 - Meridional flow
 - Convective flows
- Magnetic field
 - Long-term flux budget
 - Properties of network and emerging flux features
- Limb darkening

Observational Challenges

- Severe foreshortening/complete obscuration
- Nearly horizontal ray paths through features
- Variation of line formation height
- Need years of regular observations
- Require high cadence for some studies
- Global helioseismology is poor near poles
- Hard to get useful, definitive results

Polar Work at NSO

- Magnetic flux budget
- Polar coronal hole evolution
- Tracer rotation
- Distribution of ephemeral regions
- Latitude distribution of flux
- Intranetwork B_{horiz}
- <u>Chromospheric field</u>
- <u>Comparison with coronal jets and plumes</u>
- Vector field observations
- GONG helioseismology
- Limb darkening at various wavelengths

Sampling of Results (as time permits)

Large Scale Polar Flux

• Photosphere

• CR averages

• LOS corrected to flux

- Flux streams to poles
- <u>~Cos¹⁰ θ; asymmetric</u>
 - <u>Cycle 23 ≈ ²/₃ *Cycle 22</u>

Flux Feature Latitude Distribution

- Photosphere
- LOS field
- $\cos(\rho)$ division
- Polar projection
- <u>Larger elements</u> concentrated ~70°
- Nearly unipolar
- Only 1 sample
- Uncertain limb effects
- Need more studies

Harvey (1997)

Uniform Intranetwork B_{horiz}

- 7 h of 10 m LOS
- σ of average
- No latitude variation
- Random polarities
- Only 1 study
- Low resolution
- Expected if local?
- Need more studies

18 Nov 2008

Polar Field in Chromosphere

- Call λ8542 Å
- Wing ~250 km
- Core ~1100 km
- <u>Strong canopy</u>
- Less seething B_{hor}
- Better S/N
- Line profile varies
- Little studied yet

Flux Feature Latitude Distribution

- Chromospheric $\underline{B}_{\parallel}$
- Fall 2006 & 2007
- ρ visibility corrected
- Normalized by area
- Larger features only
- Like photosphere
- Needs more work

18 Nov 2008

Solar-C

Raouafi et al. (2007, 2008)

Bipoles, Jets & Plumes

 $x-x_0$ (Arcsec)

18 Nov 2008

 $x-x_0$ (Arcsec)

Solar-C

Vector Field

- <u>B</u><u> weak @ poles</u>
- \underline{B}_{\perp} strong @ poles
- <u>Network strong</u>
- Network is ~radial
- Need more sensitivity

SOLIS 20080326

Conclusion

- Plan A high-latitude view of poles would provide new (unique) and far better information than we presently have about a mysterious region. It is the bolder, more adventurous path.
- Plan A or B for Solar-C would each be very valuable – we can be happy with either choice.