Heating and Dynamics of the Corona:

Why We Need to Observe Very Hot & Faint Plasmas

James A. Klimchuk NASA / GSFC

Key Points

- These comments apply to all forms of heating ("ordinary" coronal heating, flares, CMEs, X-ray jets,)
- We have yet to observe directly the energy release process
 e.g., we have never seen a reconnection outflow jet
- Reconnection is a fundamental process, yet we do not know its basic properties
 - Is it simple (Petschek) or complex (tearing islands)?
- All heating is impulsive when viewed properly
- Heated plasma is initially very hot and faint
- Hot plasma cools very quickly
 - Important information is lost by the time it reaches "traditional" coronal temperatures

All Heating is Impulsive

- To understand how plasma responds to heating (and produces observed radiation), we need to consider individual magnetic field lines (flux strands).
- Plasma and heat flow along the field, so strands behave like independent, thermally insulated flow tubes.
- The heating on individual field lines is impulsive even when the heating over a large volume is steady.
- Three examples:
 - 1. Long duration flare
 - 2. Secondary instability
 - 3. Resonant wave absorption

Reconnected field lines move rapidly away from the X-point. Heating occurs only while they are in contact with standing slow mode shocks (~ 10 sec): *impulsive*. Courtesy of Tsuneta-san (modified)

Standard 2-D picture of solar flages

Secondary Instability

- *Impulsive* heating occurs at current sheets when the magnetic field is sufficiently sheared
- e.g., at the interface between adjacent flux strands in a coronal field that is tangled by photospheric convection (Parker picture)

Dahlburg, Klimchuk, & Antiochos (2003, 05, 08)

Resonant Wave Absorption

• Usual damping mechanisms are not efficient for low frequency ($\tau \sim 100$ s) waves.

• Resonant absorption occurs on magnetic field lines where the local resonance frequency matches the global loop oscillation frequency.

• Resonance conditions change as the plasma responds to the heating

• Resonance layers drift across the loop, heating field lines *impulsively* as they pass by.

Ofman, Klimchuk, & Davila (1998)

Consequences of Impulsive Heating

500 s nanoflare simulation

What Do Observations Show?

- So far, we only observe plasma that has cooled appreciably
- Strong evidence that many coronal loops are bundles of unresolved strands that are heated by "storms" of nanoflares
 - Hinode 2 talk in Boulder
 - Klimchuk (2006, Solar Phys., 234, 41)
- True of all loops? True of the diffuse corona?
- We do *not* know the details of the energy release
 - e.g., magnitude and duration of the nanoflare
- Some clues starting to come from Hinode/XRT

Hinode / XRT (Reale et al. 2008)

Be_med Image

10⁵ 10⁴ Emission Measure (10⁴⁴ cm⁻³) $_{\rm c}$ 01 $_{\rm c}$ 01 $_{\rm c}$ log EM (cm⁻³) 10¹ 10⁰∟ 6.0 6.5 7.0 7.5 log Temperature [K] Log T

T map

Hinode / XRT (Schmelz et al. 2008)

Cool part not constrained by observations

Two component model (large and small nanoflares)

Steady heating *not* plausible

20 MK equilibrium loop requires: Energy flux ~ 10^9 erg cm⁻² s⁻¹ Footpoint velocity ~ 100 km s⁻¹

Fe XII 1.4 MK	Fe XIV 1.8 MK	Fe XV 2.1 MK
Ni XVII 2.8 MK	Са XV 4.8 МК	XRT: Tipoly > 5 MK

Patsourakos & Klimchuk (2008)

What can we learn by observing hot plasma?

- DEM(T) reveals the distribution of nanoflare energies
- Dynamics of the energy release depend on the mechanism:
 - Alfvenic jets (Petschek reconnection)?
 - Turbulence (secondary instability)?
 - Large-amplitude oscillations (resonance absorption layer)?
- Velocity signatures *disappear* by the time the plasma cools to "traditional" coronal temperatures
- Flows revealed by spectral line profiles or by direct imaging in large events (flares, CMEs)
 - First ever observation of reconnection outflow
 - Simple jet or tearing islands?
- Evaporative upflows are a sensitive diagnostic of heating

DEM(T) depends on nanoflare energy distribution

Seems to best fit the observations. Surprising! Important! Uncertain. Need Solar-C!

What can we learn by observing hot plasma?

- DEM(T) reveals the distribution of nanoflare energies
- Dynamics of the energy release depend on the mechanism:
 - Alfvenic jets (Petschek reconnection)?
 - Turbulence (secondary instability)?
 - Large-amplitude oscillations (resonance absorption layer)?
- Velocity signatures *disappear* by the time the plasma cools to "traditional" coronal temperatures
- Flows revealed by spectral line profiles or by direct imaging in large events (flares, CMEs)
 - First ever observation of reconnection outflow
 - Simple jet or tearing islands?
- Evaporative upflows are a sensitive diagnostic of heating

Simulated Line Profiles

Patsourakos & Klimchuk (2006)

Observed Fe XVII Profile

EIS sit and stare observations

Line is very faint

Proposed x100 increase in throughput is a quantum improvement

See also Hara et al. (2008)

Observational Priorities

- 1. Sensitivity to faint hot emission (high throughput)
 - T ~ 5-10 MK minimum, 10-30 MK desired
 - DEM(T) ~ 10¹⁹ cm⁻⁵ K⁻¹
- 2. Temperature discrimination
 - ΔT ~ 1 MK
 - Ability to distinguish faint hot emission from bright cool emission along the l-o-s
- 3. Spatial resolution
 - 0.1 arc sec (100 km) for elemental coronal flux strands
 - Short-lived hot plasma reduces I-o-s overlap problems
 - Tremendous progress possible with much coarser resolution
- 4. Temporal resolution
 - None required for DEM(T) over large areas
 - 100 s for coronal loops
 - 1-10 s for spatially resolved reconnection outflows (flares, CMEs)

BACKUP SLIDES

Predicted Hot Line Intensities

 $DEM(T) = 10^{18} \text{ cm}^{-5} \text{ K}^{-1}$ 0.1 x 0.1 arcsec² pixel 100 s exposure

<u>Wave</u> .	Intensity*	lon	<u>logT</u>	<u>Wave</u> .	Intensity*	lon	<u>logT</u>
15.0150	5.68e-01	Fe XVII	6.6	132.9065	3.29e-01	Fe XXIII	7.2
15.2620	1.61e-01	Fe XVII		135.7912	3.22e-01	Fe XXII	7.1
16.0760	1.13e-01	Fe XVIII	6.8	192,8198	3.57e-01	Ca XVII	6.7
16.7770	3.27e-01	Fe XVII		204.6655	1.01e-01	Fe XVII	011
17.0500	4.17e-01	Fe XVII		254.3466	1.12e-01	Fe XVII	
17.0970	3.48e-01	Fe XVII		302.1902	2.49e-01	Ca XVIII	
93.9232	7.29e-01	Fe XVIII		320.5660	2.85e-01	Ni XVIII	
101.5498	1.74e-01	Fe XIX	6.9	344,7605	1.29e-01	Ca XVIII	
102.2172	1.30e-01	Fe XXI	7.0	350.4782	1.19e-01	Fe XVII	
103.9370	2.64e-01	Fe XVIII		353 9203	1 18e-01	Ar XVI	67
108.3555	5.56e-01	Fe XIX		567.8666	2.08e-01	Fe XX	•
117.1543	3.28e-01	Fe XXII		592.2357	2.54e-01	Fe XIX	
117.4996	1.18e-01	Fe XXI		721,5593	3.76e-01	Fe XX	
118.6801	2.98e-01	Fe XX	7.0	845.5715	2.29e-01	Fe XXII	
119.9836	1.49e-01	Fe XIX		974 8602	8 46e-01	Fe XVIII	
121.8448	5.84e-01	Fe XX		1118 0575	6 4 57e-01	Fe XIX	
128.7526	7.49e-01	Fe XXI		1354.0665	5 9.17e-01	Fe XXI	
132.8405	8.29e-01	Fe XX					

* photons cm⁻² sr⁻¹

Significant Heating Occurs *in the Corona*

- Coronal magnetic field becomes tangled and twisted by random footpoint motions associated with photospheric convection.
- "Reconnection" between coronal flux strands is necessary to prevent a monotonic buildup of magnetic stress and energy.
- Reconnection between a coronal flux strand and a short magnetic carpet loop **increases** the tangling (makes the problem worse).
- There is **no** magnetic carpet in active regions, so cannot heat there.

Hinode / SOT G-band