I. Observations and Observational Test of Coronal Magnetic Fields

II. High Throughput Multi-Slit Spectropolarimeter

Hao Sheng Lin

Institute for Astronomy University of Hawaii

Direct observation of coronal **B** is highly relevant to the Science Mission of Solar-C.

- Coronal magnetic field can be reliably measured
- Coronal *B* observations do provide useful information about the solar corona
 - \cdot Quantitative observational test of models possible
 - ...
 - ...
- Space is a very good place for coronal B observations
- Efficient, high-throughput spectropolarimeter design meeting the requirement of Solar-C science mission exists

I. Coronal Magnetic Fields

- The polarization of forbidden coronal emission lines
 - Saturated Hanle Effect
 - Coronal Zeeman Effect
- Diagnostic capability of Coronal Polarimetry
 - What can we measure?
 - Ambiguity
 - What cannot be measured?
 - · Complemented by Alfvén Wave Observations
- Observational Challenges
- What can we learn from Coronal Magnetometry?
 - Observational test of coronal magnetic field models
 - Reconstruction of 3-D coronal magnetic field structure
- What can be done in space?

Polarization Mechanism of Forbidden Coronal Emission Lines

The Coronal Zeeman Effect and the Saturated Hanle Effect

The Saturated Hanle Effect

The saturated Hanle effect describes the *properties of the linear polarization of the coronal emission lines (CELs)* due to the resonant scattering of the photospheric radiation by the highly ionized atoms in the corona, in the presence of the *coronal magnetic fields*

- Linear Polarization (LP)
 - LP of the CELs is either **parallel or perpendicular** to the direction of the direction of the coronal magnetic field projected in the plane of the sky.
 - Linear polarization is **not sensitive** to the amplitude of the coronal magnetic field.
- Circular Polarization (CP) Zeeman effect
 - CP is proportional to the strength of the longitudinal component of the coronal magnetic field.

The necessary conditions for saturated Hanle effect

- 1. Optically-thin atmosphere single scattering
- 2. Anisotropic illumination
- 3. 'Strong' magnetic field

The effects

- 1. Alignment of LP to B_{\perp} .
- 2. Sensitivity of CP to B_{\parallel} .

The necessary ingredients:

- 1. Optically-thin atmosphere
- 2. Anisotropic illumination
 - Prominence/filament/corona
 - Far away from the solar surface
 - Large anisotropy
 - High degree of polarization
 - High photosphere/low chromosphere
 - Close to solar surface
 - Small anisotropy
 - Low degree of polarization due to *geometrical depolarization*
- 3. 'Strong' magnetic field

The necessary ingredients:

- 1. Optically thin atmosphere
- 2. Anisotropic illumination
- 3. 'Strong' magnetic field

 $\omega_B >> A$ (Einstein's A coefficient)

- The natural line width of the spectral line (in the rest frame of the atom) is proportional to A
- If the Zeeman splitting ω_B is much larger than the natural line width of the spectral line, then there is no coherency between the magnetic substates

For forbidden transition,

- $A \approx 10^1$ to 10^2 /sec
- $B_0 \sim mG$ satisfies the strong field condition.

For permitted lines,

- $A \approx 10^6$ to 10^8 /sec
- $B_0 \sim 10 100$ G, depending on the spectral line

In comparison...

Weak field regime – Hanle effect

*ω*_{*B*} << *A*

$\overset{\omega_B}{\longleftarrow}$

For the permitted lines...

- Large Einstein's A coefficient \rightarrow broad natural line widths.
- Strong interference between the magnetic substates
- In the upper solar photosphere where there are sufficient anisotropy, the Hanle effect can be used to diagnose weak turbulent magnetic fields.

Forbidden Lines	Permitted Lines		
(M1 Transition)	(E1 Transition)		
e.g. , Fe XIII 1074.7 nm, Si IX 3934.6 nm for the solar Corona	e.g., He I 1083.0 nm, O VI 103.2 nm		
 Strong field regime: 	 Weak field regime: 		
$W_B >> A (\approx 10^1 \text{ to } 10^2 \text{ sec}^{-1}),$	$\omega_B \leq A ~(\approx 10^6 \text{ to } 10^8 \text{ sec}^{-1}),$		
 Weak interference between the magnetic substates, 	 Strong interference between the magnetic substates, 		
 Incoherent superposition of the magnetic sub-states, 	 Coherent superposition of the magnetic sub-states, 		
$ \mathbf{E} ^2 = \mathbf{E}_{-1} ^2 + \mathbf{E}_0 ^2 + \mathbf{E}_{+1} ^2$	$ \mathbf{E} ^2 = \mathbf{E}_{-1} + \mathbf{E}_0 + \mathbf{E}_{+1} ^2$		
ω_B	ω_B		
University of Hawaii Institute for Astronomy Solar-C Science Definition Meeting, ISAS, JAPAN Nov. 18 – 22, 2008			

Diagnostics Capability of Forbidden Coronal Emission Line Polarimetry

Diagnostic Capabilities of CEL Polarimetry

- Circular Polarization
 - B₁ line-of-sight magnetic field strength...with an alignment effect correction
- Linear Polarization
 - χ -Azimuth direction of B

Direction of **B** projected in the plane of the sky containing sun center.

- No sensitivity to |B|
- the van Vleck effect
 90 degree ambiguity in the azimuth direction of B, depending on Ψ

Nov. 18 - 22, 2008

Alfvén Wave Diagnostics of Corona B Next Talk

Measurement of Alfvén speed yields transverse coronal |B | projected in the POS

- CEL Doppler measurements
 - Sensitive to motion along the line of sight.
 - Tomczyk et al. 2007
- CEL LP direction oscillation
 - Sensitive to motion perpendicular to the line of sight.
 - Keil et al. (unpublished results)

Vector Coronal Magnetometry

- -• B_{\parallel} : Longitudinal |B|
 - CEL Circulation Polarization
 - B₁: Tranverse |B|
 Alfvén Waves in
 - CEL Doppler images
 - CEL LP orientation oscillations
- χ : Transverse *B* direction
 - CEL Linear Polarization

γ

Observational Challenges

Circular Polarziation

- Best spectral line for coronal *B* measurement
 Fe XIII 1075 nm
- Amplitude of CP
 - Solar Maximum: ~ 10^{-3}
 - Solar Mimumum: ~ 10⁻⁴
- With a 50-cm coronagraph on the g
 - 20" pixel
 - ~ $30 \times 10^{-6} I_c$ scattered light
 - ~ 1 hr integration time

 \rightarrow 3 G (3 σ) sensitivity @ 1.1 R_{sun}

Circular Polarziation, Low Activity Period

Coronal Magnetogram, April 6, 2004

Transverse field orientation

Longitudinal Field Strength

Contour plot of the line-of-sight magnetogram over-plotted on the SOHO/EIT FeXVI 284 A image. The contours are 5G, 3G, and 1G.

SOLARC - Solar Observatory for the Limb and Active Region Coronae - J. R. Kuhn

- PI—Jeff Kuhn (IfA)
- 50 cm aperture off-axis gregorian telescope
- No secondary mirror and spider structure in the optical path for coronagraphic performance

OFIS: A True Imaging Spectropolarimeter

- NICMOS3 IR Camera
- $16 \times 8 \Rightarrow 2 \times 64$ optical fiberbundle
- 160 × 308 mm, 79 lines/mm echelle grating with 63.5 blaze angle
- $f = 800 \text{ mm}, \Phi = 150 \text{ mm} (F/5.3)$ collimator and camera lens

The coherent optical fiber-bundle rearrange the 2dimensional image sampled by the 16×8 input array to two linear array (2 × 64). The two linear arrays act as the slits of the spectrograph, thus allowing for the simultaneous recording of the spectra from all the field points in the 2-D image plane.

Sample CEL Spectra from OFIS

One 64-fiber column illuminated 16×4 pixels area coverage

Two 64-fiber columns illuminated 16×8 pixels area coverage

What Can We Learn From Coronal Magnetometry?

Build a Coronal Magnetic Field Model Validating Coronal Magnetic Field Model

Can we build a coronal magnetic field model from the polarimetry data?

The Coronal *B* Inversion Problem

The coronal atmosphere is optically thin

- The observed coronal polarization signals may not originate from a single localized source along the line of sight.
- There are many independent parameters in the model, but only a few observables...

The inversion problem is severely under constrained!

- \Rightarrow Currently, there are no tested and reliable inversion methods for the reconstruction of the 3D coronal **B** structure using polarization measurements...
- \Rightarrow Vector tomography looks promising...

Can we build a coronal magnetic field model and reproduce the polarimetry data?

Forward Modeling...

• Yes! In principle...

If we know the 3-dimensional

- magnetic field **B**
- Density n_e
- Temperature T_e

structure of the corona, then we can synthesize the LP and CP signals emerging from the observed coronal atmosphere for comparison with the observed polarization signals...

Coronal **B** Extrapolation

In reality...

Extrapolations yield magnetic field configuration only.

There are no information about n and T.

- ⇒ n and T has to be derived, inferred, assumed, or guessed by other means...
- The photospheric and coronal observations are not co-temporal...
 - Uncertainties due to evolution of the active region.
- Potential and force-free assumption may not be valid at the photosphere.

Testing Potential Field Extrapolation with SOLARC Observations

About AR 10581 AND 10582...

Ω

 Flaring activities in AR10582 ceased about 5 days before our coronal *B* observation...

Potential field extrapolation may be OK?

Potential Field Model of AR 10581 and 10582

Since the thickness of the new source function is small, we computed the synthesized LP map as a function of position along the Line of Sight...

Nov. 18 - 22, 2008

Comparison with Judge's Synthesis Code

- Phil Judge's code includes *collisional depolarization* effect...
- We really can't tell which code is better from this comparison.
 But Judge's code includes more physics...

Circular Polarization

 $B_{\parallel}(h)$, the longitudinal *B* as a function of height *h*, are calculated for each layer.

Iayers.
 B₍(h) at layer 130 fits the observed one better.

Source location of the FeXIII 1075 nm _____ CEL...

Is this a coincidences?

NO!

- Two independent parameters
 - the degree of linear polarization, and
 - azimuth angle of linear polarization
 - have minimum at about the same location
- Synthesized B(h) matches the observed circular polarization signals at roughly the same location
- The polarization signals originate from the corona above the strongest photospheric magnetic field feature of the AR.

Conclusions

- Potential field extrapolation of AR 10582 has reproduced the observed coronal linear and circular polarization maps.
 - The LP and CP source functions are close to the location of the sunspot of the active region.
 - The locations of the LP and CP source functions are not the exactly the same...
 - The inferred LP and CP source functions are fairly *localized*!
- ⇒ Single-source inversion (Judge 2007) might be possible...
- ⇒ Potential field extrapolation may be a good 0th order approximation for the coronal magnetic field model

Liu & Lin, 2008, ApJ, 680, 1496

What's Next?

More observations (if the Sun cooperates) and more comparisons with models...

- Is potential-field extrapolation really OK?
- Does force-free extrapolations provide better model?
- MHD models should come with information about *n* and *T*...

Collaboration with T. Wieglemann & B. Inhester

- ⇒ Direct comparison can be performed without guessing where the source is located.
- Vector Tomography
 Collaboration with M. Kramar

Nov. 18 - 22, 2008

Direct Spectropolarimetry of Coronal *B* can provide important, quantitative constraints for coronal modeling.

What can be done in space?

Background-Limited Observations

- Coronal *B* sensitivity depends on the telescope
 - aperture
 - scattered light
 - Instrumental scatter
 - · Sky
- Ground-based coronagraphs are '*dust-limited*'.
 - SOLARC: ~ 25 x 10⁻⁶ I_{sun} @ 1.25 R_{sun}
 - HAO Mk4: ~ 6 x 10⁻⁶ I_{sun} @ 1.25 R_{sun}
- The Space is sky and dust-free
 - 2 x 10⁻⁷ I_{sun} for COR1 & COR2 inner field

Thompson et al., 2005, GSFC internal report

- 5 x 10⁻⁷ I_{sun} @ ~1 R_{sun}
 Korendyke & Socker, 1996, Opt. Eng., Vol. 35, 1170

The Coronal Aperture

- A factor of 100 ($10^{-5} \rightarrow 10^{-7} I_c$) improvement in scattered light is possible in the dust-free space environment
 - → A 25 cm coronagraph with 1 x $10^{-7} I_{sun}$ scattered light in space is equivalent to a 250 cm telescope on the ground with 1 x $10^{-5} I_{sun}$ scattered light.

25-cm Space Coronagraph @ 1 AU Estimated Performance

Assumptions

- $1 \times 10^{-7} I_{sun}$ scattered light
 - a factor of 300 improvement from SOLARC
- 10% system efficiency

$\mathbf{R}(3\alpha)$	20"	~1G in 5 min @1.1R _{sun}		
	5"	~ 1.3 G in 60 min @ 1.1 R _{sun}		
$oldsymbol{B}_{oldsymbol{ar{L}}}$	S. Tomczyk – Coronal Alfvén Wave, next presentation			
χ	high resolution and cadence with high sensitivity			
N _e	Fe XIII 350, 1075, and 1080 nm			
T _e	Fe XVI 530, Fe X 890, and FeXIII 1075 nm			

II. High Throughput Mulit-Slit SpectroPolarimeter

Efficient use of modern large-format focal plane arrays for

- Fast Scanning
- True-imaging

- Principle of Multi-Slit Spectropolarimetry
- Current Development
 - FIRS
 - True-imaging spectropolarimeters
 - \cdot Conventional fiber-optic array
 - Birefringent Fiber-Optic Image Slicer

Multiple-Slit Spectroscopy and SpectroPolarimetry

In conventional long-slit spectrograph, modern large array detectors are under-utilized, unless we do something different...

DWDM-Style Filters

 DWDM (Dense Wavelength Division Multiplexing) filters developed for fiber-optic communication are ideal for multi-slit spectroscopy

Parameter	Unit	Specifications
Operation Wavelength	nm	1500 - 1640
Center Wavelength @ -0.5 dB (λ_c)	nm	ITU
Center Wavelength Tolerance	nm	$+ 0.30 \sim + 0.60$
Angle of Incidence	degrees	0
Passband	nm	$(\lambda_{c} - 0.18) \sim (\lambda_{c} + 0.18)$
-0.5 dB Bandwidth	nm	≥ 0.40
-25 dB Bandwidth	nm	≤ 1.20

Custom 630 nm and 1565 nm DWDM Filters

Visible DWDM needs improvements

Wavelength λ

Spatial Direction

Fast 4-Slit Scanning

University of Hawaii Institute for Astronomy

Nov. 18 - 22, 2008

FIRS: The Facility IR Spectropolarimeter for the Dunn Solar Telescope Up to 4 lines simultaneously

Current FIRS Capabilitis

- A complete scan in ~ 10 60 minutes (sensitivity dependent)
 - F/36 feed, 150" x 75" coverage now, 150" x 150" in the future
 - F/108 feed, 50" x 25" FOV now, 50" x 50" in the future
- Simultaneous observation of
 - Fe I 630 nm, 1565 nm (FIRS), and Call 854 nm (IBIS)
 - Fe I 630 nm, He I 1083 nm (FIRS), and Call 854 nm (IBIS)

Nov. 18 - 22, 2008

Limitations of Multi-Slit Scanning

No speed-up of scan for field smaller than the separation between adjacent slits

Solutions:

- Change the plate scale on the slits to scan a smaller FOV with wider slits – e.g. DLSP at Dunn Solar Telescope
- Use True-Imaging Spectropolarimeter
 - Reflecting Image Slicer MUSE,
 - Microlens Array Tiger
 - Fiber-Optic Integral Field Unit (IFU) SOLARC/OFIS, GMOS, VIRUS
 - 1. Conventional Optical Fibers
 - 2. Birefringent Rectangular Fiber-Optic Ribbon

1. Conventional Fiber-Optic IFU

- Use standard fused silica low-loss fibers
- The geometry of conventional optical fiber prevents highdensity packing necessary for large FOV coverage...
- 50% pixel utilization is possible.

A 64 x 32 - 8 x 256 Coherent Fiber-Optic Array

 With new large-format focal plane arrays pushing, it is now possible to build large-format (10² x 10²) true-imaging spectropolarimeters for solar observation

2. Birefringent Fiber-Optic Image Slicer

Fiber-optic ribbon constructed with **rectangular optical fibers**

 Linear polarization of the guided waves is preserved - Dual-Beam Polarimetry possible through the fibers

BiFOIS Prototype Input and Output Arrays

IRIS Prototype Time Sequence

- 10" x 10" FOV
- 0.3"/pixel spatial sampling with low-order AO
- 10 second time resolution
- 15 minutes

High-Throughput Imaging Spectropolarimeters

- Fast-scanning multi-slit spectropolarimeter can greatly enhance the temporal resolution of large-area scan
 - Active region size scan for ~ 10 minutes
- True-imaging spectropolarimeter can observe a modest field of view with very high temporal resolution
 - ~10" x 10" with less than 10 sec cadence on solar disk
 - Spectropolarimetry for the solar corona

Both Fast-Scanning and Fiber-Optic Feed Can be Accommodated by a Single Spectrograph.

True-Imaging Multi-Spectral-Line Spectropolarimetry

What can we do with a true-imaging spectropolarimeter that covers a substantial FOV with diffraction-limited performance, and four or five spectral lines simultaneously ?

- Dynamics of the chromosphere
- Small-scale dynamo
- Jets
- Reconnection
- Penumbra filaments
- Dynamics of the filaments
- ???

Direct observation of coronal **B** is highly relevant to the Science Mission of Solar-C.

- Coronal magnetic field can be reliably measured
- Coronal *B* observations do provide useful information about the solar corona
 - \cdot Quantitative observational test of models possible
 - ...
 - ...
- Space is a very good place for coronal B observations
- Efficient, high-throughput spectropolarimeter design meeting the requirement of Solar-C science mission exists

