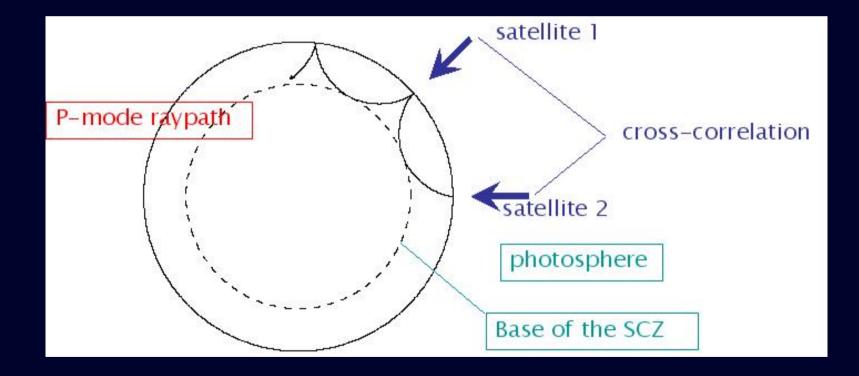
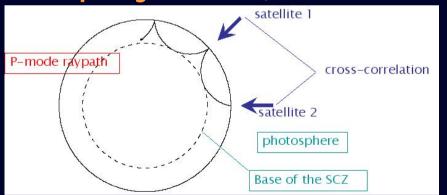
Sensitivity of large-angle method to detect deep-seated magnetic flux

Takashi Sekii NAOJ


This talk is about...

Q: Is going to high latitudes really worth it?

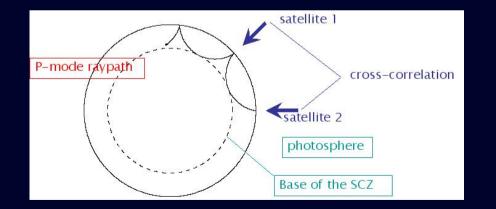
From the 'large-angle method' point of view


The large-angle method

□ The p-mode ray paths that reach the tachocline have 45-degree skip angle

The large-angle method

- Observing solar wavefield from high latitudes improves chance of seeing anything in the *tachocline* region
- Because then we can observe Doppler signal at high latitudes without the effect of projection/foreshortening

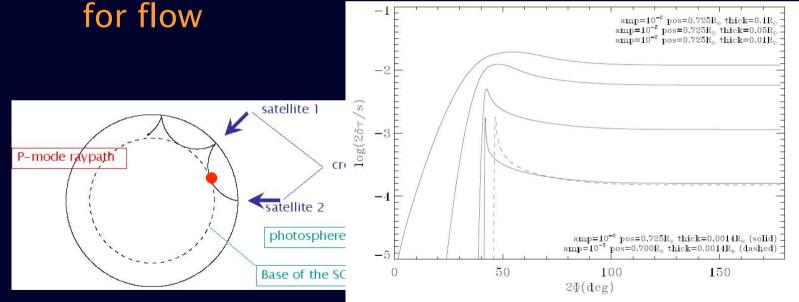


The large-angle method

Do we really need two vantage points?

People have been looking for 45-degree signal anomaly and nobody has convincingly found it

We may need every little extra help


What do we expect to see anyway?

- □ Flux tube: ~100 kG, ~1000-km thick?
 - effective 'soundspeed' perturbation of ~10⁻⁵
 - Around 30-degree latitude?
- Flow inside the flux tube: up to ~200 m/s
 - **v**/c~10⁻³, v/rΩ~0.2
 - amplitude large enough but probably too thin to be seen by rotation inversion
 - This flow also exhibits more transient signature when the tubes are rising
- There is the issue of uncertain cross section/filling factor

Travel-time signatures

Rough estimates based on ray theory

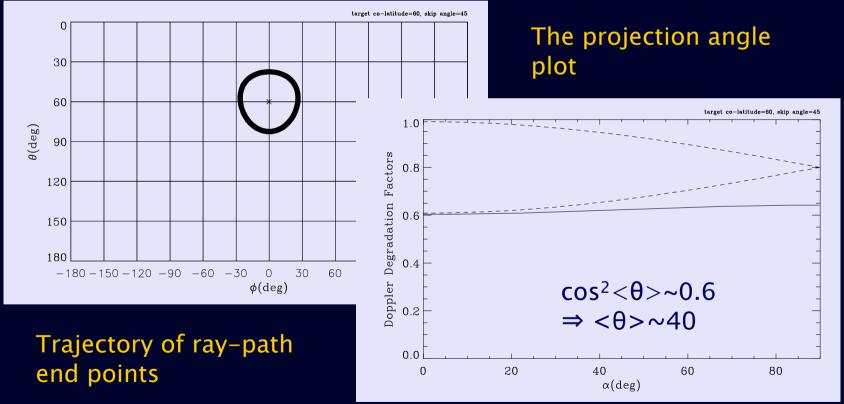
- Requires ~a few msec sensitivity for detecting flux directly by wavespeed anomaly
- This translates to a few $\times 10^{-1}$ sec sensitivity

Measuring travel times

- It is not just a matter of travel-time sensitivity
 - We need a way to disentangle the signature from other sources of perturbations
 - However, for the moment, let us forget this issue
- What are the difficulties with measuring travel time with an angle?

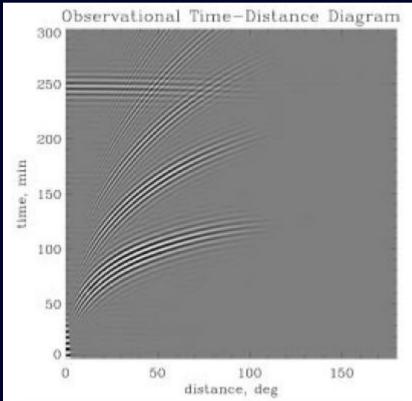
The projection and foreshortening

There are two effects

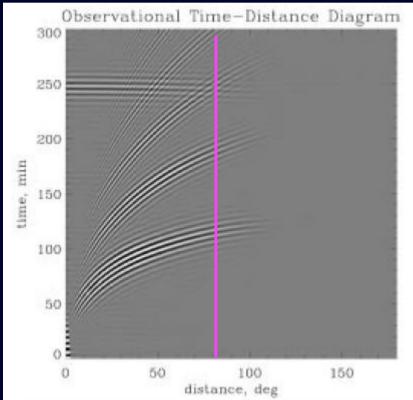

projection: Doppler signal multiplied by cos while the background hardly changes (around 3mHz anyway)

□ i.e. noisy cross-correlation function

- foreshortening: loss of spatial resolution leads to overlaying many cross-correlation functions with different travel times
 - i.e. temporally blurred (noisy) cross-correlation function


Looking for a flux tube?

Suppoe it is located at r/R=0.725, 30-deg latitude


The projection and foreshortening

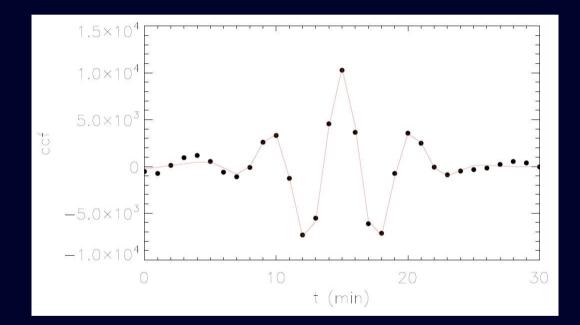
A 45-degree ray off equator: how difficult?

The projection and foreshortening

A 45-degree ray off equator: how difficult?

Looking for a flux tube?

- Cross-correlation function S/N down by a factor ~1.7
- **Effective resolution down by a factor 1.3**
- □ What if the full resolution is 1 arcsec?
 - =700-km resolution (disc centre)


Simulation

Artificially generated stochastically excited oscillation data

- for Gabor wavelets with a background noise,
- some proper parameters (5-min period etc)
- some arbitrary parameters (travel time etc)
- Prescribed spatial resolution and noise level
- These are fitted by a non-linear LS method
 - statistic is pretty close to Gaussian

Results

Sample curve

Results

Measurement errors (still tentative)

- 1-min cadence, 10-day series
 - □ 750-km resolution, 2 per-cent noise: 1.8 sec
 - This is 1-arcsec resolution
 - □ 900-km resolution, 2.5 per-cent noise: 3.0sec
 - □ 1125-km resolution, 3 per-cent noise: 8.5 sec
 - This is the relevant case

1-min cadence, 100-day series

Errors reduced by about <u>factor 3</u>

With deep focusing, longer data sets etc, we may be able to do it

The bottom line is...

- Going to high latitudes does reduce measurement errors in travel time by a moderate factor
- □ This reduction *could* be crucial
 - We seem to be in a twilight zone between the land of possible and the land of impossible
 depends on what the Sun really is doing

What if...

- What if the flux tubes are located at 40 degree?
- □ What if the flux tubes are located deeper?
- Don't we want to know what is taking place beneath the tachocline?

Then going to high latitudes is even more important, not to mention other merits of doing so

This talk was about...

- Q: Is going to high latitudes really worth it?
- From the 'large-angle method' point of view
 A: Most likely YES