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SOT observations, combined with 3-D

models, are answering many of our
long-standing questions about the
magnetic field in the photosphere



SOT Highlights & Discoveries

« Flux Emergence on Many Scales

* Turbulent and Transient Horizontal Magnetic Fields

« Convective Collapse

« Polar Magnetic Fields -- you have seen Tsuneta's talk
« Reconnections & Jets Everywhere

* Penumbral Structure

* Flux Budget of a Decaying Sunspot

* Fields, Currents & NLFF Extrapolations -- see Schrijver’s talk
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Flux Emergence on Many Scales

A. Title, “Ponds, Fragments, and the Distribution of the Surface
Magnetic Field,” 2nd Hinode Science Meeting, Boulder, Oct
2008

e M. Cheung et al, “Solar Surface Emerging Flux Regions: a

Comparative Study of Radiative MHD Modeling and Hinode
SOT Observations”

 Flux emerges in similar patterns at all scales of convection:
super granulation (20 Mm), mesogranulation (6 Mm), and
granulation (1 Mm) as well as active regions (100 Mm).

 Flux does not appear as simple bipoles, but rather a sea of
mixed polarity structures.
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Flux Emergence Patterns in
Active Regions*
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INumerical Simulation of Flux Emergence
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Numerical Simulation of Flux Emergence
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Turbulent & Transient Horizontal Fields

R. Ishikawa, “Statistical Properties of Transient
Horizontal Fields,” 2nd Hinode Science Meeting,
Boulder, Oct 2008

« B. Lites, “Is Flux Submergence an Essential aspect of
Flux Emergence”

« J. Pietarila Graham, “The Solar Surface Dynamo”

e O. Steiner, “The Horizontal Internetwork Field:
Numerical Simulations in Comparison to
Observations with Hinode”
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Pervasive horizontal magnetic flux (Lites et al. 2008)

>~ 11 Mx cm—2 < BT >~ 55 Mx cm-2
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Numerical simulations (cont.)

Snapshot of Bhor, Bver, and the continuum intensity at 630 nm from run h20 in the

horizontal section of (T500 nm) = 1.
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Polarimetry (cont.)

The vertical field component is more subject to apparent flux cancellation than the

horizontal component, because ....

y [km]

the vertical field component has smaller scales and higher intermittency than the

horizontal component.
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Strong horizontal photospheric magnetic field in SSD

(Schussler & Vogler 2008)

Run C: log Bhor
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(see also Steiner et al. 2008) horizontal field <’
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Prevalent weak vertical field

Observed PDF derived from Stokes V (Lites et al. 2008) Simulated PDFs
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Lites etal. 2008

Sorzontal iec s dominate the quiet Sun Orozco Suarez etal. 2007
Centenoetal 2007
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Horizontal fi elds are ubiquitous

all over the solar surface
(Plage. Ishikawa et al. 2008, Polar reglon. Tsuneta et al 2008)
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Similar properties of THMFs
in both regions

Horizontal field cein @
i lorizontal 1i€’d distribution
—Quiet Sun j * 93% has field strength
= /\ ——Plage | smaller than 700G, which is
D S\ | the equipartition field
g 10 % | corresponding to the
2z ' { granular (convective)
a3 motion.
o 10 ﬁ
- t 5
| between the plage and
e 1 | ) gmet regions in spite of x8
0 500 1000 1500 2000 difference in vertical flux
Field strength (G) Note that network region, which has
N persistent strong vertical flux, are
Ishikawa and Tsuneta, A&A, accepted removed for the plot of the plage.
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Location of THMFs appearance
and disappearance |

Intensity where THMFs

r and disappear
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All events: no clear preferred orientation

Threshold : Definition 490° (N)
LP >0.22% & Area 2 3 pixels
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Properties of THMFs

» Very transient, and frequent

* The lifetime and size are smaller than those of granules
* Appear inside bright granules

-» Receptive to the convective motion

» THMFs are found in the quiet Sun, plage region, and polar region, and the
properties are the same.

» Magnetic field strength lower than equipartition field corresponding to
granules

» Same occurrence rate between active (plage) region and QS in spite of x8
difference in vertical flux

Essentially no preferred orientation for all events

-)'I;I_'u-'i‘ roperties of THMFs are independent from global magnetic
ields

Lsocal dynamo process would be generating THMFs all over the
un

Open questions

- When THMFs disappear, they do not necessarily reach the
inter granular lane. Where do THMFs go? Do THMFs reach the
chromosphere?

 What is the magnetic configuration of THMFs?
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SOLARIOPTICAL TELESCOPE

Convective Collapse to form Flux Tube st

« S. Nagata, “Convective Instability and the Formation
of Solar Magnetic Flux Tubes,” 2nd Hinode Science
Meeting, Boulder, Oct 2008

« C. Fischer, “Analysis of High Cadence Hinode SP
Quiet Sun Time Series”
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Convective Collapse

A model to explain the formation of kilo-gauss field

flux tube on the Sun

Parker (1978); Webb & Roberts (1978); Spruit & Zweibel (1979)

(a) (b)
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Nagata et al. (2008)




The most prominent example
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Evolution curve on [3-a diagram

Stable regime
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Unstable regime
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Reconnections & Jets Everywhere

K. Shibata, “Ubiquitous Magnetic Reconnection in the Solar
Atmosphere,” 2nd Hinode Science Meeting, Boulder, Oct 2008

« M. Shimojo, “The Relationship between the Magnetic Field and
the Coronal Activities in the Polar Region”

« R. Kano et al, “Photospheric Magnetic Activities to Trigger
Micro-flares Observed with Hinode SOT and XRT"

« Y. Katsukawa & J. Jurcak, “Chromospheric Activity at the
Smallest Scales Obtained by Hinode: Small Scale Activities in
Penumbrae”

« T. Shimizu, “Hinode Observation of the Vector Magnetic Fields
in a Sunspot Light Bridge Accompanied by Chromospheric
Plasma Ejections”
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Various Ca Il H jets
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Relation to rr}agnetic field

Call H  FG StokesV



NAOJS

National Astronomical
Observatory of Japan

White: ®
toward us
Black: ®

Result:2
The magnetic fields of the jet regions around the pole.
« Anephemeral region in the polar region with an X-ray jet
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Micro-flares observed with Hinode

2008/09/30
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Detailed structure of penumbral micro-jets

CallH f>3mHz Call H f>3mHz

Penumbral microj

4000km

1600km 1600km

 Emanate from between two penumbral filaments, suggesting the
penumbral microjets are following background vertical fields.

» Happen near penumbral grains migrating to an umbra.
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Possible mechanism of the penumbral microjets

Penumbral microjet

nore vertical fields
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Recurrent chromospheric plasma ejections

= Recurrent ejections
— 29 April Nothing happened before 19:50UT.

— 30 April Occurred in almost all the periods. Continued
until 1 May.

¥ What changed magnetically from 29 April to 30 April?
= Physical parameters of ejections

— Apparent length: 1,500-3,000km, speed: 6-40km/s

— Inclination of magnetic field at the footpoints (SP data)

166.7deg from LOS direction
« Estimated length 6,500-13,000km

» Estimated upward speed 26-180km/s

The right side of the bright footpoints

30 April 2007CallH
04:55:50
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Activities in the LB : Interpretation

m Long-lasting chromospheric plasma ejections
- Indication of magnetic reconnections at the very low altitude

- glgse to the height where the magnetic fields are measured with

» Providing the magnetic field structure near reconnection points
c.f. Loop microflares

Umbral held

m Lying “twisted” magnetic flux ejections:

(current carrying) loop

-~ Red current “line” = Current loop

- Upward current loop is trapped
below the cusp-like magnetic field

- Ejections were observed only at
the east side of the current loop

Formation of anti-parallel magnetic
field lines

-=> Magnetic reconnection

West-side

-> Chromospheric plasma
ejections
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Penumbral Field Structure

« L. Bellot Rubio, “Sunspot Magnetic Fields near the
Diffraction Limit: the Hinode View,” 2nd Hinode
Science Meeting, Boulder, Oct 2008

K. Ichimoto, “Convective Nature of the Evershed
Observed by SOT/Hinode,” ibid.
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Hinode/SP: full Stokes spectropolarimetry at 0.3"
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Horizontal interlacing of different magnetic components (i

Ichimoto et al., 2007, PASJ, 59, 593

Milne-Eddington inversion At 0.3", two magnetic components show up

prominently in the field strength and
inclination maps derived from ME inversions
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Vertical interlacing of different magnetic components

Bellot Rubio et al., 2007, ApJ, 668, L91
Bright filaments in inner limbside penumbra

The NCP of spectral lines is not zero

and shows correlation with penumbral :
filaments, confirming results of Tritchler structures (with flows) embedded

et al. (2007) and Ichimoto et al. (2008) in ambient sunspot field

Bright filaments are distinct
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Bellot Rubio et al., 2007, ApJ, 668, L91

Limb-side penumbra, 6 = 50°
ottt 1" "

Multi-lobed Stokes V profiles still occur, but now
it is less likely that they are due to horizontal
interlacing of different magnetic components

Stokes V/le,qs [%]
o

-4

-0.5 0.0 0.5 1.0 1.5-0.5 0.0 0.5 1.0 1.5-0.5 0.0 0.5 1.0 1.5-0.5 0.0 0.5 1.0 1.5-0.5 0.0 0.5 1.0 1.5
A - 6301.5 [A]

Magnetic components of opposite polarity exist along the
LOS: one is strongly Doppler-shifted to the red



Penumbral field lines return back to solar surface

Sainz Dalda & Bellot Rubio, 2008, A&A, 481, L21
Hinode/NFI Fe | 630.2 nm, AL = -120 mA

Opposite-polarity field lines occur
everywhere in the mid and outer
penumbra

First time that they are imaged
directly (confirming earlier
inversion results....)




Supersonic Evershed flows occur in the penumbra

Stokes V signal at +343 mA (~12 km s™) Stokes |

0.2

Stokes V.
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NOAA 10973, 6 ~ 5°, courtesy K. Ichimoto

-3000 E

09 Doppler shift of 9.5 km s-!!

Patches with supersonic flows are observed everywhere in the middle and
outer penumbra (as also reported by Shimizu et al. 2008)



Stokes-V at 6302.5A +277mA

Upflow patches with the same
polarity of the sunspot

V: =276 .6mA




Upflow and downflow patches are aligned on horizontal field filaments
that carries the Evershed flow.
—) Source and sink of individual Evershed flow channel!
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What is the origin of the twisting appearance?
=» Overturning-convection seen from a side(!?)

cooling —
vershed flow P

Overturning convection

Ichimoto, etal., 2007, Science, 318, 1597 V. Zakharov, etal., 2008,
A & A manuscript no. 0266 ¢ ESO




Summary (1):

‘Convective nature of the Evershed Effect’

1)Source and sink of the Evershed flow are
identified; The geometry is consistent with the 3D
uncombed penumbral model.

2) Evershed flow carries the energy of penumbra.

3) Source region of Evershed flow channels shows
a hint of overturning convection.

4)Flowing plasma is not field free, but magnetized.

5) Flow velocity (and magnetic field strength)
increase with depth in flowing channel (€ NCP).



Flux tube model vs. gap model

Embedded flux tube model Gap model

(e.g., Solanki & Motavon 1993 (e.g., Spruit & Schermer 2006)
Schlichenmaier etal 1998)

e ——— e o .
Field free gap
There is no observational evidence Penetrating convection
of the lower boundary of flux tubes. Flowing gas is not field free.

In both models, buoyancy drives the rising motion.




Summary (2):

 [f the flux tube model allows vertically elongated ‘flux tubes’,
and if the gap model discard the word “field free”, then

there is no fundamental difference between the
two models. And SOT observations suggest this
direction.

« Evershed effect may be interpreted as a natural
consequence of ‘thermal convection’ under a
strong, inclined magnetic fields.

Thank you!



Flux Budget of a Decaying Sunspot

« Kubo et al, “Magnetic Flux Loss & Flux Transport in a
Decaying Active Region,” 2nd Hinode Science
Meeting, Boulder, Oct 2008
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Flux Budget of a Decaying Sunspot

 How much magnetic flux is carried away from the sunspot to
the outer boundary of the moat region?

* How much magnetic flux is removed from the photosphere?

Hinode/SOT allows us, for the first time to measure flux change without
any effects of atmospheric seeing through a lifetime of (small) sunspots.

™
- | ~

Sunspot (penumbra) -~ Moat region v Outside moat region
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Flux cancellation
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Flux Budget of a Decaying Sunspot

+1.0
Baall 7-Oct-2007 06:15 - 06:47 XU A M
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Flux change rates in the period between two red lines (06:15 — 21:26 on Oct 7)
- The sunspot significantly decayed (but still survived).

- No significant flux emergence (form visual inspection)




Magnetic flux cancellation at moat boundary

* Magnetic flux loss rate:

» ;1 ;_'- - *: R 5 Observations
(=) 1) (Z)
: dt )i, N Qg \ AL oy
—[ Mixed polarity region
DY R F =74 ( \ F,= 0.8

: - Positive: 3.9 [=-2.7+7.4-0.8] x 10715 : - ;
| dF/dt = + 2.7
|
|

- J

Positive magnetic elements

The flux loss rates of positive and negative
- ™\ _
elements balance each other in the mixed F, = O: 4 ( F,= 1.2

polarity region dF/dt=-2.3

- Magnetic flux cancellation! - /
Negative magnetic elements

Unit : [107° Mx/sec]
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Flux Budget of a Decaying Sunspot

* Most of the magnetic flux removed from the sunspot (and inner moat
region) is transported to the outer boundary of the moat region
as moving magnetic features.

* The transported magnetic flux is removed from the photosphere
by the flux cancellation at the outer boundary of the moat region.

Sunspot (penumbra) Moat region v Outside moat region
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Fields, Currents and NLFF
Extrapolations

SRy isosurface of |J| shown in red QREISNeCEE.

« Stay tuned for talk by K. Schrijver later this afternoon
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