

Contamination analysis for UV observations as an extension of *Hinode* OTA

Solar-C Science Definition Meeting

Nov. 20, 2008

F. Urayama (Space Engineering Development Co. Ltd.) R. Yamanaka, E. Miyazaki, Y. Kimoto (JAXA)

Outline

- 1. Molecular contamination on orbit
- 2. Contamination analysis for *Hinode* (SOLAR-B) OTA
- 3. Objectives of contamination analysis for SOLAR-C Plan B
- 4. Analysis assumptions (Preliminary)
- 5. Results (Preliminary)
- 6. Summary

1. Molecular contamination on orbit

Photo by NASA

Ref.: C. E. Soares, R. R. Mikatarian‡a, R. A. Scharf and E A. Miles: ISS Flights 1A/R-6A External Contamination Observations and Surface Assessment, Proc. SPIE, 4774, pp.210-221, 2002.

Mechanism of molecular contamination on orbit

- Molecular contaminants were outgassed from organic materials.
- The contaminants reached and accumulated on the surfaces.
- Solar UV light changed the contaminants to dark color.

2. Contamination analysis for *Hinode* OTA

4

2. Contamination analysis for Hinode OTA (Cont'd)

Contaminants degraded optical systems!

Increase in temperature of mirrors.

In worst-case scenario;

- ➡ Thermal deformation of the mirrors.
- Degradation of diffraction-limited images of OTA.
- > Decrease in throughput at shorter wavelength.

2. Contamination analysis for Hinode OTA (Cont'd)

Mathematical models for OTA contamination analyses

1. Mass accumulation on the critical surfaces

(Deposition rate)=(Outgassing rate)*(Transport factor)*(Sticking coefficient)

2. Optical degradation of the mirrors

$$\rho(\lambda) = \rho_0(\lambda) \cdot \exp(-2\alpha_C(\lambda) \cdot \chi)$$

 λ : Wavelength α_c : Absorption coefficient inherent in ρ : Reflectance of contaminated mirrorcontaminant. ρ_0 : Reflectance of clean mirror χ : Contaminant thickness

2. Contamination analysis for Hinode OTA (Cont'd)

- 1) Contaminated optics: CLU, M1, M2 in degradation order.
- 2) Model contaminant: Tetra-methyl tetra-phenyl trisiloxane (MPS).
- 3) Absorption coefficient: constant with UV irradiation time.7

3. Objectives of contamination analysis for SOLAR-C Plan B

To assess degradation of throughput at wavelength range of solar UV light, induced by molecular contamination.

4. Analysis assumptions (Preliminary)

- SOLAR-C telescope is constructed of same materials and structures (outgassing sources) as OTA.
- Temperature of SOLAR-C telescope is same as the temperature (outgassing rate) of OTA on orbit.
- The mirrors coated with AI and MgF₂ are used for SOLAR-C. UV reflectance of the mirrors is higher than that of OTA mirrors.
- Critical wavelengths of the SOLAR-C observation are 122, 155 and 280 nm.

Note) Observation wavelengths of OTA were ranged from 388 to 688 nm.

Absorption coefficients of the contaminants are equal to;

average value of the absorption coefficients of several materials at wavelength of 122 or 155 nm. These coefficients were derived from report No. MCR-80-637.

the absorption coefficient of photo-deposited Methyl Phenyl Siloxane (MPS) at wavelength of 280 nm.

Note) The absorption coefficients of photo-deposited MPS at wavelength range of visible light were used for OTA analysis.

- Photo-deposition of the molecular contaminants occurs on M1 and M2. Other optical elements are not taken into account.
- Threshold of SOLAR-C throughput is 10% for three years.

5. Results (Preliminary)

5. Results (Preliminary) (Cont'd)

Preliminary analysis for SOLAR-C Plan B shows;

- ✓ Throughput at wavelength of 122 nm decreases to 10% for 17 months.
- ✓ Throughput at wavelength of 155 nm or 280 nm maintains above 10% for three years.
- In order to achieve the SOLAR-C Plan B mission success by using one telescope, bake-out of the components in vacuum chambers and on orbit will take a lot of time and effort!
- If wavelength of 122 nm is important for SOLAR-C science, redesign of telescope may be required. The redesign includes preparation of a special telescope for 122 nm.

Degradation of solar UV space instruments: OSO-8

LPSP instrument on OSO-8. The ordinate gives the value relative to that at launch, and time on the abscissa is given in days after launch.

instruments on SOHO, 2004.

Degradation of solar UV space instruments: UARS-SUSIM

Ref.) Udo Schühle: Cleanliness and Calibration stability of UV instruments on SOHO, 2004.