Coronal Mass Ejection Studies with SOLAR-C

Angelos Vourlidas, NR

Why do we care about CMEs?

CMEs:

- Are the major explosive energy release phenomenon in the solar system
- Are the main driver of space weather for Earth (+other planets)
- Provide access to many interesting physics: e.g., modulate Galactic Cosmic Rays, accelerate particles, etc

CMEs in the LASCO Era (1)

• CME observations over a FULL solar cycle

CME/day: 0.5 – 4.5 Flare/day: 1.5 – 7.5

CME rates peak ~6 months AFTER Sunspot rates

CME in the LASCO Era (2)

SOLAR-C Meeting, ISAS, Nov. 18-21, 2008

CME Initiation Models (quite a few but...)

(from I. Roussev's ESPM 2008 presentation)

Amari *et al.* (2000, 2003, 2007); Antiochos *et al.* (1999); Forbes & Isenberg (1991); Gibson & Low (1998); Kliem *et al.* (2004); Lin *et al.* (2001); Linker *et al.* (2001); Lynch *et al.* (2005);
Manchester *et al.* (2003, 2004); Moore *et al.* (2001); Sturrock *et al.* (2001); Titov & Démoulin (1999); Tokman & Bellan (2002); and Roussev *et al.* (2003, 2004, 2007).

CMEs in the LASCO Era (3)

CME Kinematics – Flare Association

(from J. Zhang's SHINE 2007 presentation)

Cycle 23: Review of LASCO Era

- Knowledge of CME Properties over a full solar cycle and 1000's of events
- Establishment of relation to coronal phenomena (flares, filament eruptions)
- Discovery of CME counterparts in low corona (EUV-waves, dimmings, plasmoids)
- CME role in Sun-Earth Connection is established, extensively analyzed.
- Theory converges towards fluxrope as the ejected structure
 - 3D MHD modeling captures the main CME features (shock, core, speed, width)
- Clear understanding of CME images (shock, core, front, streamers)
 - But we don't know
 - true size, direction, entrained magnetic field, initiation mechanism, energy partition, relation to extended corona, propagation in heliosphere, geoeffectiveness, SEP accelerations, etc.....

Cycle 24: The SECCHI Era

- Complete coverage of the Sun-Earth Heliosphere
- Simultaneous observations from 2 viewpoints

SECCHI Era: Size & Direction of CME

From Thernisien et al 2009

SOLAR-C Meeting, ISAS, Nov. 18-21, 2008

CMEs – A. Vourlidas

CME Current Sheets & Internal Structure

Cycle 24: SECCHI Era (Anticipated Contributions)

- 3D measurements
 - true size, velocity, propagation direction, relation to AR
- Detail analysis of the acceleration phase
 - energy partition between CME and flare, initiation mechanism(?)
- Propagation in the heliosphere
 - Interaction with other CMEs & fast/slow solar wind, internal structure
- CME formation in the low corona
 - nature of waves/shocks, interaction w/ background fields
- Clearer understanding of CMEs geoeffectiveness
 - SEP acceleration, interaction with geospace
- But we may not know
 - entrained magnetic field, initiation mechanism, effects on/from global corona, geoeffectiveness, role in SEP acceleration, ...

Cycle 25: SOLAR-C Era

Mission Considerations

- Max Inclination of 45°
- 2016 launch (cycle 24 ~min)
- High inclinations in 4-5 yrs (cycle 25 ~max)
- Optional co-rotation with Earth (TBD)
- Elliptical or circular (1 AU) orbits (TBD)

• Synergies in 2016 – 2020

- SDO operational
 - EUV coverage of inner corona (<1.5 Rs)
- STEREO operational(?)
 - Full coverage of inner heliosphere (+/- 45° from solar limbs)
- Solar Probe /Orbiter(?)
 - In-situ coverage of corona/heliosphere
 - → Good EUV coverage in the Ecliptic plane
 - → But coronagraphic coverage is uncertain

CME Science Objectives for Plan-A

Plan-A

Orbit Advantages

- Viewpoint away from symmetry plane
 - Varying line-of-sight through dust (F-corona)
- Simultaneous imaging of far-side and earth-facing solar hemispheres

Science Objectives:

- How CMEs affect the large scale corona?
- What is the 3D morphology of CMEs/CIRs/Plumes?
 - Validate STEREO results offering a truly independent measurement
 - Obtain direction with a single observation
 - Stronger constraints on IPS and Faraday rotation analysis
- How does the solar wind structures propagate & interact w/ each other?
 - Observed the formation of solar wind and the birth of CIRs.
- Space weather on Earth and inner planets (w/ Heliospheric Imager)
 - Which CMEs are headed towards Earth, Solar Orbiter/Probe, etc?

Why we need out-of-ecliptic CME Observations?

- The effects of CMEs on the global corona are unknown
 - How does the shock propagate around the Sun?
 - Are there sympathetic CMEs?
 - How do streamers reform?
 - What is the interplay between CMEs, shock waves and Coronal Holes?
 - Where does the solar wind originate?

SOLAR-C Meeting, ISAS, Nov. 18-21, 2008

What to Expect from a 45° Viewing Angle

MHD Simulation provided by N. Lugaz

- Decouple shock from streamer bending
- Better measurement of CME ecliptic extent
- Better estimate of CME mass/density distribution

Instrument Concepts for Plan-A

Option 1: Use SECCHI/COR2 (almost) as is

	COR2	Modified
FOV (Rs)	2.5 -15	1.5 - 15
Spatial Res. (")	30	30
Exposure (sec)	2	2
Bandpass (nm)	650-750	650-750
Polarization	Yes	Yes
Detector	2kx2k CCD	2kx2k APS
Mass (Kg)	10	5.5
Volume (m)	120x14 ²	120x10 ²
Power (W)	10	8
TRL	9	5

Why?

- High TRL design, meets science objectives
- APS implementation lowers mass/power/volume

Changes from COR2

- CCD →APS
- Occulter position mechanism (as in LASCO)

Instrument Concepts for Plan-A

Option 2: Compact Coronagraph (CCOR)

	COR2	CCOR
FOV (Rs)	2.5 -15	1.5 - 15
Spatial Res. (")	30	30
Exposure (sec)	2	~5
Bandpass (nm)	650-750	650-750
Polarization	Yes	Yes
Detector	2kx2k CCD	2kx2k APS
Mass (Kg)	10	<4
Volume (m)	120x14 ²	45x13 ²
Power (W)	~10	~3
TRL	9	4

Why?

- Very compact design, meets science objectives
- APS implementation lowers mass/power/volume

Changes from COR2

- CCD →APS (exists)
- Occulter position mechanism (ala LASCO)
- Lower TRL (design studies for 3 missions)

Augmentation Options for Plan-A

- Heliospheric Imager (details)
 - Extend FOV to ~90 Rs (24°) along Sun-Earth line
 - Solar wind, dust, Space Weather studies
 - Moderate to small resource requirements (<4kg, <3W)
 - Low risk.
- Compact Spectrograph (details)
 - Coronal spectroscopy capability with modest resources
 - Solar wind & CME velocities, thermal broadening, heating profiles
 - Composition of plasma in CMEs, plumes, solar wind.

Summary

- Out-of-ecliptic orbit offers unique advantages for CME & heliospheric studies
 - The corona has never been imaged before from such a viewpoint
 - Better viewing of global corona, better 3D reconstructions of events, better imaging of solar wind structures, unique dust & IPS measurements.
- Coronagraph telescope is an important payload complement
 - Several high TRL options
 - Small mass & power requirements
 - Modest telemetry requirements
 - Large FOV, short exposures, simple electronics

• Heliospheric Imager is a viable option

- It depends on available s/c resources, orbit design
- High payoff for space weather and solar wind studies

Reduction in F-Corona Signal for Plan-A Orbit

- Reduced F-corona signal improves SNR of white light observations dramatically.
- Orbit is ideal for dust studies!

Raw C3 Image

Heliospheric Imager for SOLAR-C (HISOC)

	COR2	HISOC	
FOV (Rs)	2.5 -15	4 - 84	
Spatial Res. (")	30	36	
Exposure (sec)	2	Variable	
Bandpass (nm)	650-750	500-700	
Polarization	Yes	No	
Detector	2kx2k CCD	2kx2k APS	
Mass (Kg)	10	4.5	
Volume (cm)	120x14 ²	42x14x18	
Power (W)	~10	>1	
TRL	9	4	

Why?

- Expands mission objectives with minimum resource investment.
- Very compact design
- No mechanisms
- Uses same APS as the coronagraph
- Lower TRL but minimum risk

Coronal Spectrograph Concept

NOTE: This is a strawman concept. Needs further study to adapt it to Solar-C mission requirements.

Based on Alice Spectrograph

Wavelength range	970-1040 Á			tor Door Zero Order Baffle Crating
Lines	Ly γ , Fe XVIII, CIII, Ar XII, Fe XII, Ly β , Fe X, OVI doublet, Si XII (2 nd order)			Failsafe Door
Effective Area	1 cm ²			
Mass	<4.4 kg			Aperture Door
UV line property	Physical properties measured/ derived	Relevan	it issues about corona, solar wind and solar transients	soc
Line profile From O VI (O ⁺⁵ , M/Q=3.2), Si XII (Si ⁺¹¹ , M/Q=2.5), Ly β (H ⁺⁰ /proton), C III (C ⁺²)	Non-thermal ion velocity in the corona and solar wind Line broadening by CME shocks or expansion Electron temperature	Variation slow win turbulenc Ion temp depender → CME/ Electron → corona	s of non-thermal ion velocities with time, heliocentric height, fast/ d regions, and $M/Q \rightarrow$ Solar wind heating, acceleration and ee eratures associated with heating by CME shocks (mass or M/Q ncy?) ICME properties and SEP production temperature in the corona and CMEs al and CME temperature structure	
OVI λλ1032/1037 intensity ratio	Solar wind ion outflow speed (100-400 km/s), O ⁺⁵ as a proxy	Solar wir fast wind CME pro	nd ion speed as a function of heliocentric height and within slow/ regions \rightarrow Solar wind heating and acceleration, solar wind origin pagation speed \rightarrow CME energetics	
Elemental abundance From O VI, Lyβ, Si XII, Fe X and C III line ratios	Si/O, Fe/O, O/H, Si/H, Fe/H in the corona/solar wind and CMEs	FIP effec position n → solar v Possible s of solar v Abundan	t associated with location of fast /slow solar wind flows and relative to close/open field regions and heliospheric plasma sheet wind origin mass differentiation along SW flow →dynamics and propagation wind ces in CME/ICME →CME initiation	
Line intensity From O VI, Lyβ, Si XII, C III and Fe XVIII	Emission line fluxes in the corona/solar wind and CMEs Electron density and temperature	Variation Variation spatial sth CME der evolution CME sho Post-CM SEP prod	s with space and time \rightarrow solar wind 'blobs' and turbulence s with heliocentric height and longitude \rightarrow coronal and solar wind ructure hsity, temperature and composition structures \rightarrow CME initiation, and energetics, relation to ICME properties hock parameters, e.g. compression ratio \rightarrow SEP production E current sheet properties \rightarrow CME initiation and reconnection, luction	
Doppler shift of lines From O VI, Lyβ, C III	Line-of-sight velocity	3-D CMI →CME i	E velocity structures nitiation and evolution, CME/ICME structure	U

Solar Wind Outflow in HI-1

ε **= 24**° **ε = 4**°

Approximate location of Sun (not to scale!)

HI1-A observations for the month of April, 2007

SOLAR-C Meeting, ISAS, Nov. 18-21, 2008

CMEs – A. Vourlidas

SOLAR-C Meeting, ISAS, Nov. 18-21, 2008

CMEs – A. Vourlidas

Current Ideas on Interplanetary CMEs

Corotating Interaction Regions

Pizzo, V. (1978), J. Geophys. Res., 83, 5563

