VAULT Lya Telescope: The First Sub-arcsecond Images of the Sun's Atmosphere

> Angelos Vourlidas VAULT Project Scientist

Very Advanced UL traviolet Telescope (VAULT) PI: Dr. Clarence Korendyke (NRL)

OBJECTIVES

- Investigate the fine scale structure of the solar atmosphere (see G. Doschek's talk for details).
 - Loop connectivity from the photosphere to the corona
 - Coronal heating mechanisms (footpoint motions, nanoflares)
- Demonstrate that ultra-high resolution imaging (~200 km) is achievable with a moderate telescope.
- Develop and qualify future space instrumentation and techniques.

Instrument Description

- 30cm, f/24.6 Cassegrain
- Zero-dispersion spectroheliograph
- Lyα (1216 Å), Δλ=70Å

- 3072×2048, 9µm CCD
- 0.25" angular resolution
- 90% spectral purity

583"×234" @ 0.3" or 423×170 Mm @ 210 km

Quiet Sun

Peering into a single supergranule...

80" (58 Mm)

Comparison with other wavelengths

Alignment accuracy of 2 pixels (~ 0.24 arcsec).

Loop Structures in Lya/171Å

Lyα (1-5×10⁴ K)

171Å (~10⁶ K)

Loop Analysis (Patsourakos et al 2007)

Filament Studies

Where is the cool material? (Millard et al 2009)

Emission Measure Calculations

Lya emission is <100x than predicted by standard coronal heating models

Review

- No significant morphological change at sub-arcsecond scales.
 - Lya optically thick at 0.5"
 - Only absorption features <0.5"
- Flows (~20km/s) at ≤ 0.5 " scales.
 - Counterstreaming flows detected in filaments
- Brightenings over 1-2 min.
- Possible existence of "atoflares" (~10²² ergs).
 - But how many are there?
- Excess of Lyα material compared to the amount expected from a thermal conduction-dominated CCTR, even for "identical" structures.

Future Plans

- VAULT data is available on line (<u>http://wwwsolar.nrl.navy.mil/rockets/vault/</u>)
- <u>Next step</u>: VERIS Sounding Rocket = EUV Spectroscopy at 0.3" resolution!
 - investigate most of the problems raised in Plan-B science objectives (resolve flows, loop internal structure)
 - raise TRL, refine design/science objectives for the Plan-B spectrometer
 - First Flight scheduled for end of 2009.

VERIS Specifications

Plate scale	0.15"/pixel (VAULT= 0.125"/pixel)
Simultaneous Field of view	Slit: 0.15"x150"; Slot: 10" x 150"
Maximum raster width	150"
Wavelength range	515 – 635 Angstroms
Exposure times	5s active regions
Velocity resolution	~8km/s in slot <3km/s classical spectroscopy
Temperature coverage	3x10 ⁴ – 1.5x10 ⁷ K
Multiorder imaging of a 40"x150" area	24s (imaging cadence)

VERIS Instrument

