紫外可視光近赤外望遠鏡検討 Solar UV, Visible and near IR Telescope (SUVIT)

Y. Suematsu (NAOJ)

Solar-C B案

「ひので」の成果を発展させるため、Solar-C B案では、太陽表面 活動現象と関連して(光球)・彩層の加熱・ダイナミクス現象の 磁気プラズマ物理の解明に重点を置く。 彩層スペクトル線での偏光観測 (S/N~10^4) 高時間分解能(<10sec)、高空間分解能(<0.1") フォトン必要、大きい口径

この一つの装置として、口径1.5mクラスで紫外から近赤外での 高精度偏光観測を検討。

•光学的成立性(構造)

•熱的成立性

ひのでOTAの開発資産を生かす

口径1.5m

サイエンスからは口径は大きいほど良いが、実現性の観点から

- ・主鏡の製作可能性(軽量化大事)、コーティング
- ・望遠鏡の排熱
- ・ロケット(HII)の能力、フェアリングサイズ
- •地上試験
- 他のプロジェクトとの共同開発(WISH1.5m)、地上試験設備の
 シェア

ひのでOTAの時より主鏡軽量化技術 が進んでいる。口径1-2mクラスで90% の軽量化。

▪Sunrise口径1m

・地上試験で重力変形軽減大事

候補となる観測波長、スペクトル線

Instrument	Spectrum line	wavelength	Purpose
Vis/UV broadband imager	UV continuum	~250nm	High res. Img of photospehre
	Mg II h/k	280nm	High resimg of chromosphere
	CN band	388nm	Granules and magnetic elements
	G-band	430nm	Granules and magnetic elements
Vis/NIR narrowband imager	Mg Ib2	512nm	Low chromosphere V and B
	Fel	525nm	Ph otosph ere B
+He D3	Na ID1 (D2)	589nm	Low chromosphere V and B High photosphere
	Hα	656nm	High chromosphere V
	Ca II IRT	854nm	High chromosphere T, V and B
UV/Vis/NIR spectrometer	Mg II h/k	280nm	High chromosphere T and V
	Ca II IRT	854nm	High chromosphere T, V and B
+Ca II IRT weaker line	Hel	1083nm	High chromosphere V and B

光学系設計ガイドライン

0. 望遠鏡長を出来るだけ短く

for dual satellite launch < 3.8m

- 1. 観測波長範囲: 250 1100 nm all mirrors telescope design?
- 2. 視野: at least 200" x200"
- 3. 高精度偏光観測(可視光、近赤外)要求

axi-symmetric optics before polarization calibration (or modulator) equipment

4. コリメート光による望遠鏡一焦点面装置間結合、射出瞳径 60~90mm

for loose positional tolerance

Conceptual Design

Positional Tolerance Study of ϕ 1.5 m Gregorian

M1-M2 (cm)	300	280	250	220	OTA 150
f1 (cm)	246.6	231. 467	208.467	185. 167	116.9617
	(F1/1.64)	(F1/1. 54)	(F1/1.39)	(F1/1. 23)	(F1/2.34)
f2 (cm)	45.7633	41.775	35.9961	30. 4184	26. 247
Defocus 1 <i>µ</i>	0. 0367	0. 0415	0.0508	0.0636	0. 0178
A20 (Strehl)	(0. 983)	(0. 980)	(0.968)	(0.951)	(0. 997)
Defocus 3µ A20		0. 1245 (0. 832)	0. 1522 (0. 748)		0.057 (0.967)
Decenter10 µ	-0. 0359	-0.0432	-0.0588	-0.0831	-0. 0125
A31	(0. 994)	(0.991)	(0.983)	(0.966)	(0. 999)
Decenter50 μ A31		-0.216 (0.791)	-0. 294 (0. 653)	-0. 4156 (0. 4267)	-0.0625 (0.98)
Tilt 10"	0. 0908	0.0996	0. 1161	0. 1379	0. 01897
B31	(0. 960)	(0.952)	(0. 936)	(0. 910)	(0. 998)
Tilt 50"	0. 454	0. 498	0. 581		0. 0948
B31	(0. 362)	(0. 289)	(0. 190)		(0. 955)

Baseline Optical Parameters

	SOT-OTA (SOLAR-B)	SUVIRT-OTA (SOLAR-C)		
Entrance pupil (mm)	500	1500		
M1-M2 distance (mm)	1500	2800		
M1 outer diameter (mm)	560	1580		
clear aperture	509	1513		
radius (focal)	2339.4 (1169.7)	4629.34 (2314.67)		
conic const.	-0.9706	-0.990927		
M2 outer diameter (mm)	159	340		
clear aperture	147	320. 5		
radius (focal)	524.94 (262.47)	835.494 (417.747)		
conic const.	-0.3996	-0. 548155		
HDM outer diameter (mm)	32.83	48.37		

Baseline Telescope Design

Spot Diagram

Telescope Assemly = 3-mirror Gregorian

3-mirror Gregorian

Cassegrain-type Collimator : diameter is equal to exit pupil

実効焦点距離 580mm

ミラー反射コーティング

ひのでOTAは保護膜付き銀コーティング(太陽光吸収率~6.5%) 360nm以下で反射率低下→ 紫外観測には不適 紫外観測には AI+MgF2が候補 (太陽光吸収率 ~10%) 銀コーティングに比べ、全体的に反射率悪い(特に800nm前後)

・ひので可視光望遠鏡(OTA)の排熱方式を基本とする(開口及び 上部ラジェターによる輻射排熱) ・約200ノードのOTAスケールアップモデル 極軌道、静止軌道で高温状態を模擬 To space **Front aperture** Sun-shade (CFRP) To sun-shade & Top ring thermal shield tube -Top spider (ε =0.75) **Mirror support** (Super invar) Secondary mirror (ULE) Thermal input to Heat dump mirror secondary mirror (2.3W) -Upper truss Thermal shield tube(CFRP) Center section Thermal input to primary mirror (21W) -Optical bench unit **Primary mirror (ULE)** To cold plate ($\varepsilon = 0.75$) Mirror support (Super invar) Radiation to cold plate \square \frown Cold plate (Aluminum)

Structure Model of φ1.5 m Telescope: Scaled-up model of OTA

熱モデルの表面熱特性は高温状態を模擬するため、ひので OTAのEOL時を想定。表は光学系の熱吸収を与える。

名称	吸収	·率 α	入射量(W)	吸収量(W)	
主鏡	α1	0.118	2074.9	244.8	
排熱鏡	αH	0.1	1830.1	175.4	
副鏡	α2	0.118	76.2	9.0	
コリメータ	α3	0.11	19.4	2.1	改訂
	431.4				

ΟΤΑ α	OTA吸収量(W)
0.1	22.3
0.15	27.2
0.1	2
TBD	0.5
合計	52

※αの値はICDパッケージより抜粋(中間報告と異なる)

※OTA熱設計中間報告より

Solar-C Solar Synchronous Polar Orbit same as Hinode

Temperatures for Polar Orbit

Solar-C Geosynchronous Orbit

Temperatures for Geosynchronous Orbit

Sensitivity study with radiator area modification

2) Mod-2 Enhance conduction at HDM inner spider AlBe (210W/mK) x 3 spiders ↓
AlBe (210W/mK) x 6 spiders

コーティング反射率劣化時

Al+MgF2コーティングを想定すると、OTAのEOLが初期状態である。この劣化時を模擬するため、主鏡・副鏡αを0.05増やして検討。表はこの場合の熱吸収。

名称	吸収率 α		入射量(W)	吸収量(W)	変更前
主鏡	α1	0.168	2074.9	348.6	245
排熱鏡	αH	0.1	1726.3	165.4	175
副鏡	α2	0.168	71.9	12.1	9
コリメータ	α3	0.11	18.6	2.0	2.1
	528.2	431			

Predicted temperatures for optics

温度 (℃)	太陽同期 極軌道	静止軌 道	極軌道 上部ラジエ ター拡張 (Mod-1)	極軌道 上部ラジ エター拡 張+HDM スパイ ダーλ増加	極軌道 Mod-1 +Md-2+ HDMシリ ンダー拡 張	太陽同 期極軌 道 +Mod-1 主鏡・副 鏡α +0.05劣 化	静止軌道 +Mod-1 主鏡・副 鏡α+0.05 劣化
M1 surface	61	49	52	52	52	80	70
M2 Surface	-2 ~ -7	-24	-12 ~-8	-12 ~-8	-12 ~-7	0 ~ 4	-17 ~-16
HDM surface	109 ~ 111	100	103 ~ 104	77 ~ 78	60 ~ 61	63 ~ 64	51
CLU	34 - 37	22-24	24 - 27	24 - 27	24 - 26	41	29

Summary 1

ロ径1.5m、主鏡・副鏡間距離2.8m長のグレゴリアン望 遠鏡の成立性

コリメータ部は
 3面反射系 throughput 0.9^5=0.6
 レンズ+反射
 でトレードオフ

軸外しグレゴリアンとのトレードオフ

Summary2

OTA式の熱設計を検討:

・極軌道より静止軌道の方が地球放射の影響が小さいため、望遠鏡温度が低く、軌道変動も小さい。

・望遠鏡長が相対的に短いため、上部ラジエター面積が 小さくなり、主鏡が高温。排熱鏡も相対的に小さくなり(高 熱集中)、高温となる。モデルを一部変更することで初期 条件では許容温度範囲内に入る目処が立ちそうである が、Al+MgF2コーティング劣化時はOTA方式の排熱で は温度を下げることができず、より反射率の高いコーティ ングの開発(SAGEMに検討依頼中)、主鏡周りからの直 接排熱を検討(プラネットに依頼中)する必要がある。

Off-axis Gregorian

利点

- ・中信遮蔽なし→散乱光低、画像コントラスト大
- •排熱鏡(HDM)部の排熱•冷却設計自由度大

欠点

- ・人為偏光大 観測データによる偏光較正の可能性
- ・主鏡、副鏡の製作、検証難しい、alignmentの難しさ
- 非軸対称の構造変形、熱変形の影響

Off-Axis Gregorian

Spot Diagram

