SOLAR-C Mission Option-A (Plan-A)

H. Hara (NAOJ) JAXA SOLAR-C WG 2010 Oct 10

3rd SOLAR-C Science Definition Meeting

Interim Report

Contents

E	xecutive Summary (not completed)	2
1.	Solar-C Mission Science Goals	6
	1.1 Origin of Solar Magnetism	6
	1.1.2 Generation of Magnetic Field by Dynamo	
	1.1.3 Prediction of Solar Cycles	10
	1.2 Exploration of Solar Interior	. 11
	1.2.1 T1. Differential Rotation and Meridional Flow in the Polar Regions and the Deep Convection Zone	
	1.2.2 T2: Magnetic Flux Distribution and Evolution in the Polar Regions	13
	1.2.3 T3: Dynamical Coupling Between Magnetic Fields and Flows	
	1.2.4 T4: Structure and Evolution of Solar Convection	15
	1.3 Solar Irradiance	. 16
	1.4 Activity of Outer Solar Atmosphere in Polar Regions	. 17
	1.4.1 Coronal Structures and Activity in Polar Regions	
	1.4.2 Solar Wind	
	1.4.3 Coronal Mass Ejections & Disturbance	22
	1.5 Clue to Past Solar Activity from Cosmic Ray Measurements in Heliosphere	. 24
	1.6 Scientific Innovation in SOLAR-C Mission	. 25
2	Scientific Requirements	. 26
	2.1 Scientific Requirements	
	2.1 Scientific Requirements for Observables of Helioseismology	
	2.1.2 Requirements for Observables of Magnetic Fields	
	2.1.3 Requirements for Observables of TSI measurement	
	2.2 Science Payload	. 32
	2.2.1 Helioseismic and Activity Imager	
	2.2.2 EUV & X-ray Spectroscopic Imaging Telescopes	
	2.2.3 Solar Irradiance Monitor	
	2.2.4 Heliospheric Imager (Optional)	
	2.2.5 In-Situ Instruments (Optional)	
	2.2.6 Other Instruments (Optional)	
	2.3 Spacecraft Requirements given from the Science Objectives	. 36
3	Spacecraft System	. 39
	3.1 Spacecraft System Requirements	. 39
	3.2 Orbit and Mission Profile	. 39
	3.2.1 Trajectory Options for SOLAR-C Option-A	
	3.2.2 Orbit and Mission Profile of SEP Option	41
	3.3 Spacecraft System Design	
	3.3.1 Spacecraft Configuration	
	3.3.2 Mass Budget	
	3.3.3 Power Budget 3.3.4 Communication Link Budget	
	3.3.5 System Thermal Design	

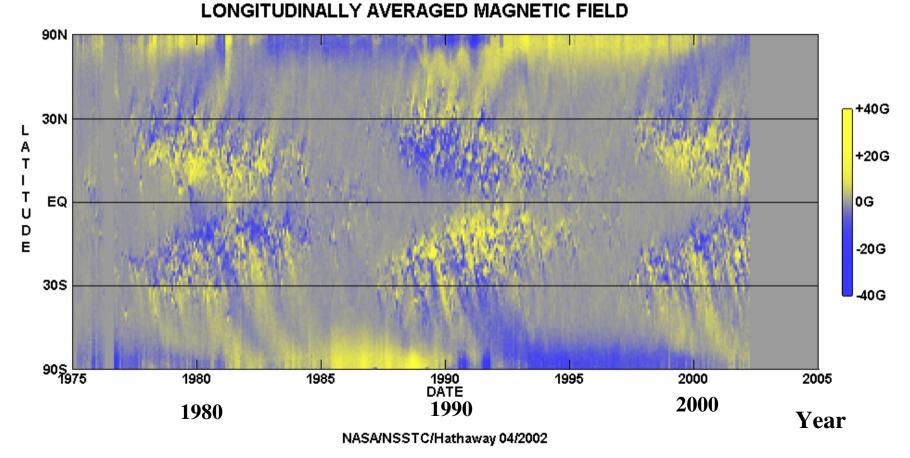
3.4 Spacecraft Subsystems	
3.4.1 Data Handling System	
3.4.2 Communication System	
3.4.3 Power Supply System	
3.4.4 Attitude Control System	
3.4.5 Chemical Propulsion System	
3.4.6 Ion Engine System	
3.4.7 Structure System	
3.4.8 Thermal Control System	
3.4.9 Design Philosophy for Radiation Tolerance (Figure not prepared)	
4. Development Philosophy & Schedule	
5. Cost Estimate (intentionally not shown in this report)	
5.1 Condition of Estimation	57
5.2 Cost Estimates	
5.2 Cost Estimates	
6. Mission Promotion & Project Management	
6.1 Science Schedule Coordinator	
6.2 Research Groups	
6.3 International Collaboration & Task Sharing	
6.4 Coordination with Other Observatories	
6.5 Data Analysis & Modeling	
6.5.1 Data Use policy	
6.5.2 Data Analysis Software	
6.6 Solar-C Data Center	58
Appendix	60
Appendix A:	60
A 1 Exploration of α-effect and turbulent diffusion	
A.2 Flows associated with flux emergence	
A 3 The inclination requirement	
A.4 Rough estimates based on ray theory	
A.5 Estimates based on realistic numerical simulations	
Appendix B: References	66
Appendix C: Acronyms	
Authorship	

SOLAR-C Concept

- Two options are under study:
 - Option-A (so-called Plan-A):

Exploration of origin of the solar magnetic activity cycle from an out-of-ecliptic orbit by X-ray/magnetic field/helioseismic observations

Toward understanding the solar magnetic activity cycle


 Option-B: high-spatial resolution observations of the dynamic Sun with enhanced spectroscopic and polarimetric capabilities

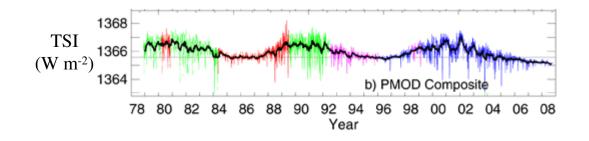
Toward understanding the magnetic-field dissipation processes

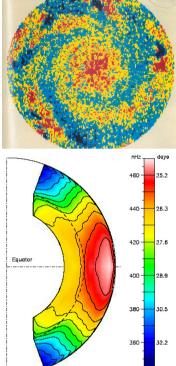
Launched by JAXA H2A rocket

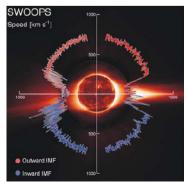
Solar Magnetic Activity Cycle

- How are magnetic fields created in the sun? (Dynamo)
- Internal flows, behavior of polar magnetic fields, and polarity reversal at poles from out-of-ecliptic observations may be important.

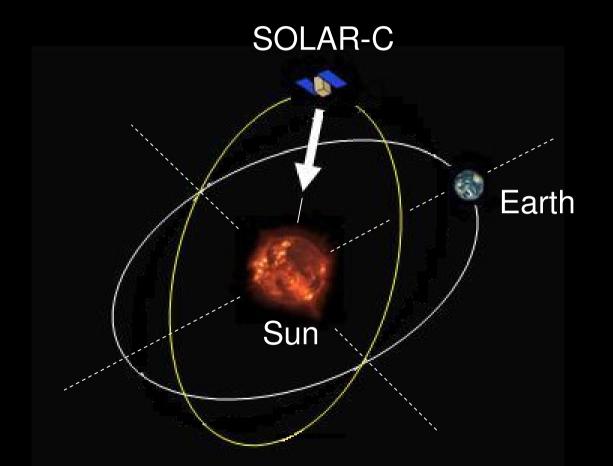
Option-A


Exploration from out-of-ecliptic orbit


<Toward understanding the solar dynamo>


- Surface magnetic activity in polar regions
- Surface/internal flow fields in polar regions
- Convection in polar regions
- Search of tachocline regarded as a source region of strong magnetic fields

<Exploration from Vantage Point>

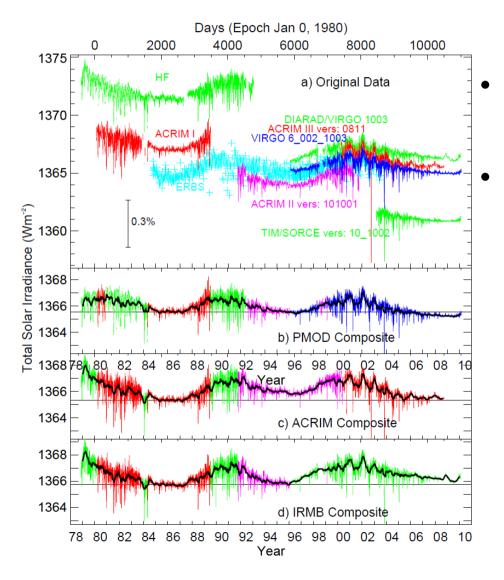

- Global and local evolution of polar upper atmosphere from new viewpoints
- Total irradiance measurements from out-of-ecliptic orbit
- Solar wind measurement in polar CH and Alfven wave detection from inclined views
- Imaging of CMEs and solar wind/CIR shock structures
- Others

Option-A Target Final Orbit

The target orbital period of 1 yr, synchronized with Earth

Issues on Solar Dynamo from Interim Report (IR)

- Q1) What physical processes dominate the generation of global-scale poloidal magnetic fields and where do they operate?
- Q2) How does the transformation between the poloidal (polar) and toroidal (active regions) magnetic fluxes occur? How does this regulate the cyclic magnetic activity?
- Q3) What are the structure and the evolution of the solar differential rotation, and the mean, large-scale meridional flow, how are they maintained and how do they vary with the solar cycle?
- Q4) What is the dynamical origin of photospheric active regions? What is the role of the tachocline?
- Q5) How can we predict sunspot cycles and periods of high solar activity?

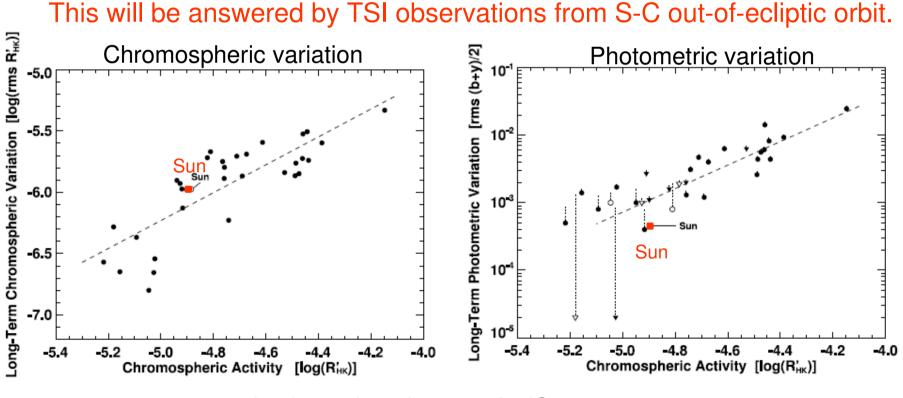

Prime Measurement Targets in S-C for understanding Solar Dynamo

- T1) Differential rotation and meridional flow in the polar regions and the deep convection zone
- T2) Photospheric magnetic flux distribution and evolution in the polar regions
- T3) Dynamical coupling between magnetic fields and flows
- T4) Structure and evolution of solar convection

Obs.of upper solar atmosphere currently described in *IR*

- Formation/evolution of coronal structures
 - Global-scale coronal structure in polar points
 - Plume
 - Small-scale bright points
- Solar wind
 - Spectroscopic detection of Alfven waves by different view angles
 - Restrict the range of $T_{\perp}/T_{//}$ in O v 1032 observations for the inner corona by different view angles
 - No description on the in-situ solar wind measurements on S-C

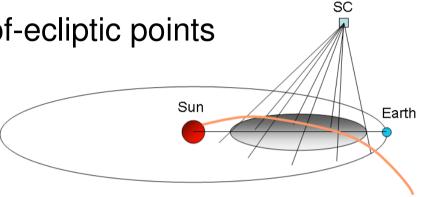
Total Solar Irradiance (TSI) from out-of-ecliptic plane


Understand the sun as a star

Solar irradiance TSI cycle variation ~0.1% p-p

Figure from PMOD WRC homepage

Photometric variation of solar type stars


- Solar type stars show larger amplitude photometric variations, (though the number of sample is small...)
- Is it due to a difference in viewing angle to activity belts?

Lockwood et al. 2007, ApJS, 171, 260

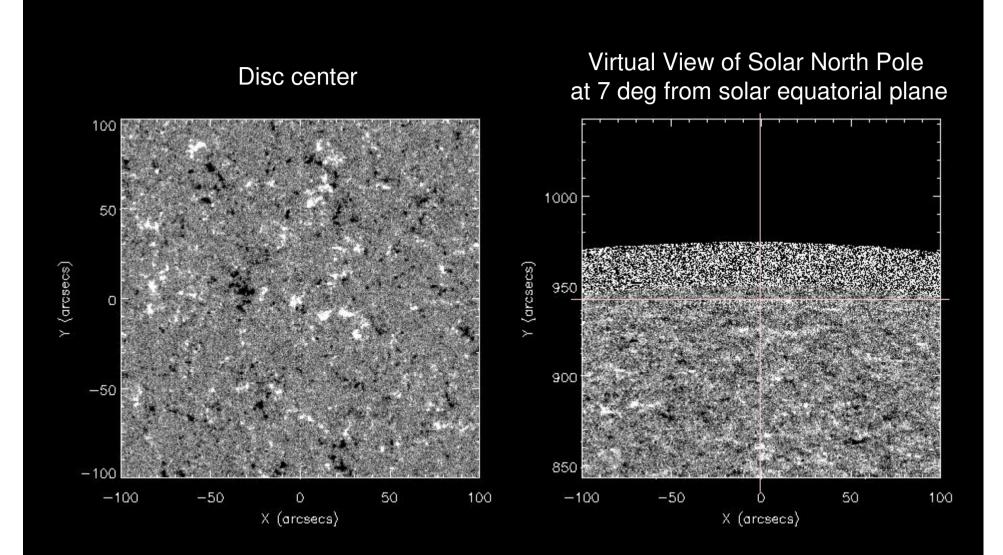
Optional targets when we can have payload mass

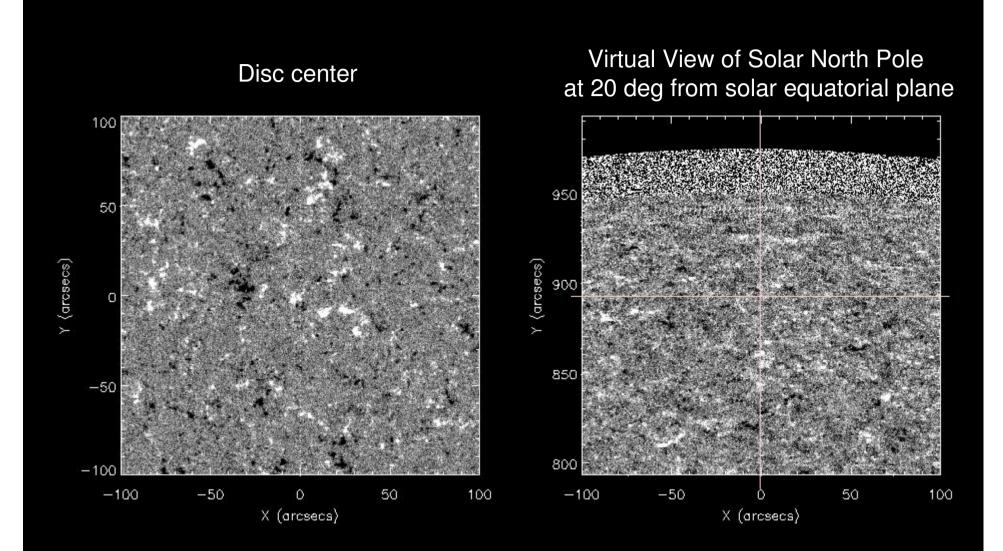
CME/CIR imaging from out-of-ecliptic points

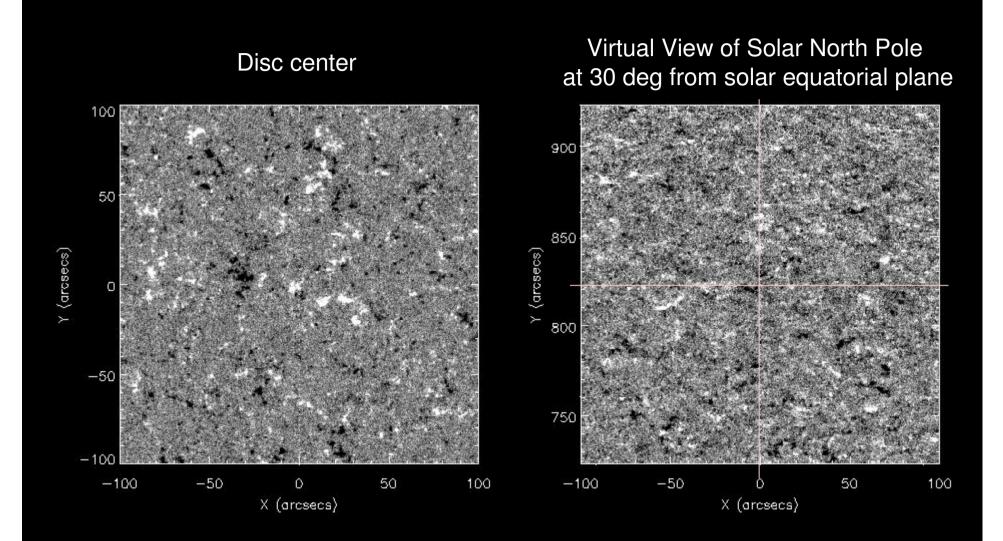
• Monitoring cosmic rays,

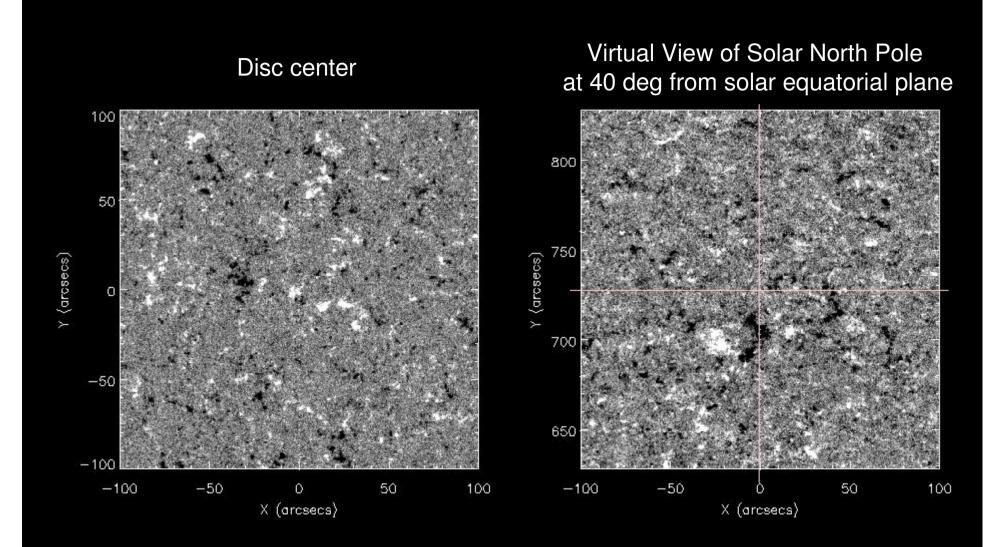
which relates to generation of cosmogenic isotopes (¹⁴C, ¹⁰Be, ..), to understand the transport processes in the heliosphere [This is just an idea, need to consider more for justification.] A quick scan of heliosphere in the solar cycle may give a new hint to understand the discrepancy between the model and Ulysses results.

Option-A: Model Payload


Each has a space heritage/a slightly modified version in missions that have been flown.

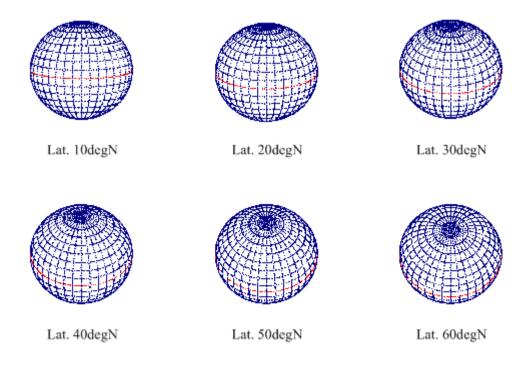

- Visible-light Magnetic-field and Doppler imager
 - full-disk observations
 - Internal flow structures, mag. fields, convection, .. in polar regions
- X-ray/EUV telescope
 - Coronal dynamics in polar regions, synergy with coronal imagers, observing the sun around the earth, in stereo-scopic views
- EUV imaging spectrometer
 - Flow/wave structures in polar regions (plume, solar wind)
- Total irradiance monitor
 - Latitudinal distribution of surface irradiance
- Others (Options at present)
 - Heliospheric imager: CME imaging, solar wind/CIR shock structures
 - In-situ instruments (CR detector, magnetometer?, etc.; not defined)
- Total mass 130 kg (tentative allocation for design activity)
- Detailed optical layout studies not described in IR


Requirements for S/C System Design


- Duration >40 days (TBD) for a solar latitude of >30 deg (TBD)
 - Target of max. latitude : ~40 deg (higher is better, of course)
 - Need to define these numbers clearly from evaluation through helioseismic model calculations
- Distance to the Sun in the final orbit: 1.0 AU
 - Minimum distance to the sun is 0.7 AU from the thermal-design point of view
 - Maximum distance to the sun is not defined because of a possibility of ballistic orbits by Jupiter swing-by
- Use 7 deg tilt angle of the solar rotation axis to the ecliptic plane
- Duration of cruise phase to the final orbit: ~5 years
 - Need 40-days (TBD) observations near perihelion/aphelion points in the cruise phase
- Payload weight: 130 kg
- Data recording rate: >100 kbps ave.
- Mission life:

cruise phase $N_0 \sim 5 \text{ yr} + N_1 \text{ yr} + \text{extended duration } N_2 \text{ yr}$ (total $\sim N_3 \text{ yr}$)

Requirement for average data recording rate


- Data Recording Rate: ~100 kbps (Total)
- Estimation for a model case (preliminary)
 - Helioseismology/B-field observations ~ 50kbps
 - Global helioseismology
 - 512×512(pixels) ×3(bit/pixel)

/60(s)/1024(kbps/bps) = 13 kbps ave.

- Local helioseismology
 - $-1024 \times 1024 \times 3$ (bit/pixel) /60(s)/1024 = 51 kbps ave.
- Magnetic (B) field
 - LOS B: 1024 ×1024 ×3(bit/pixel)/300s/1024 = 10 kbps
 - Vec. B:2048 ×2048 ×3(b/pix) × 16img /7200(s)/1024 = 28 kbps
- EUV imaging spectroscopy ~20 kbps ave.
- EUV/X-ray imaging ~20 kbps ave.
- TSI monitor: ~1 kbps
- Heliospheric imager ~ 1kbps by on-board summing
- Others: probably negligible

Mission Requirements for Orbit Formation

- To reach Solar Lat. 40° by early 2020's.
- Mass of Science instruments > 130kg.
- Data transmission rate > 300kbps @ 0.6AU.

View of the Sun from the High Solar Latitude

Challenge to Solar Lat. 40°

• Rough Estimation of the Launch Energy

 $C3 = (v_{\infty})^2 \approx (20 \text{ km/s})^2 \approx 400 \text{ km}^2/\text{s}^2$ (*cf.* C3 for the Jupiter Transfer $\approx 80 \text{ km}^2/\text{s}^2$)

Techniques to Overcome the Challenge

Trajectory Manipulation Techniques Available

-Geometric Relation

Take advantage of the tilt of the Solar equatorial plane against the ecliptic plane (about 7deg.). Choice of the appropriate launch date is important.

-Launcher Capacity

Launch energy is still the most contributing part. Launch a small spacecraft with a heavy launcher yields large launch energy.

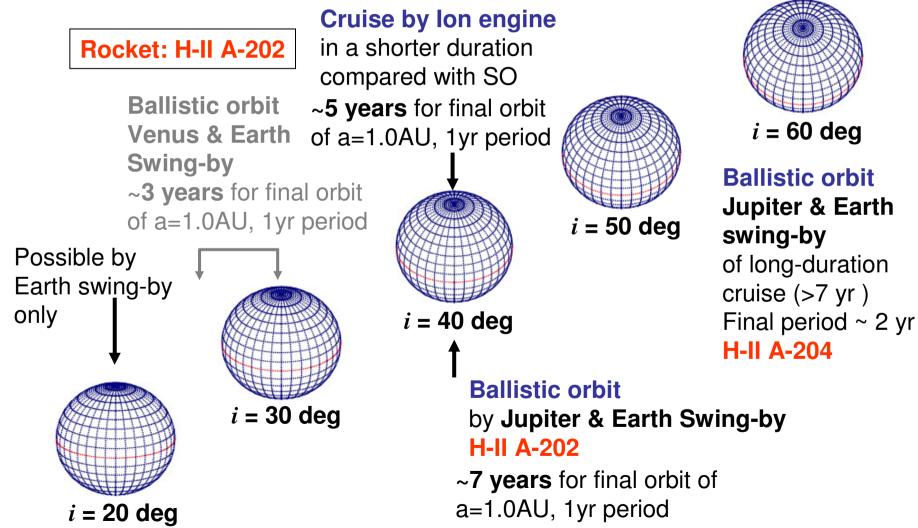
-Gravity Assist (Swingby)

The most efficient trajectory manipulation method in the interplanetary cruise, which is widely used in various planetary missions.

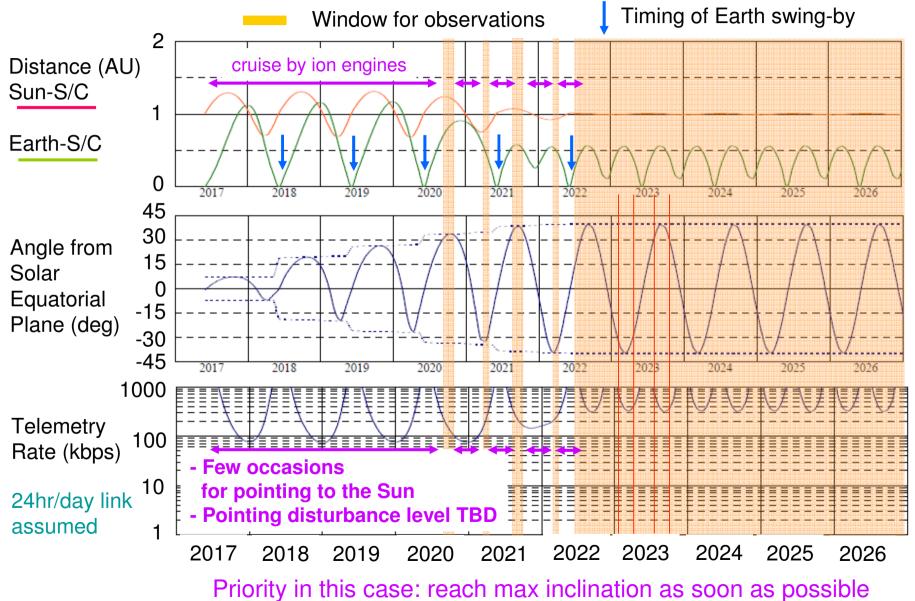
-Propulsion

Usage of high efficiency propulsion system enables large velocity increment with less propellant.

Possible Options of the Trajectory Sequence

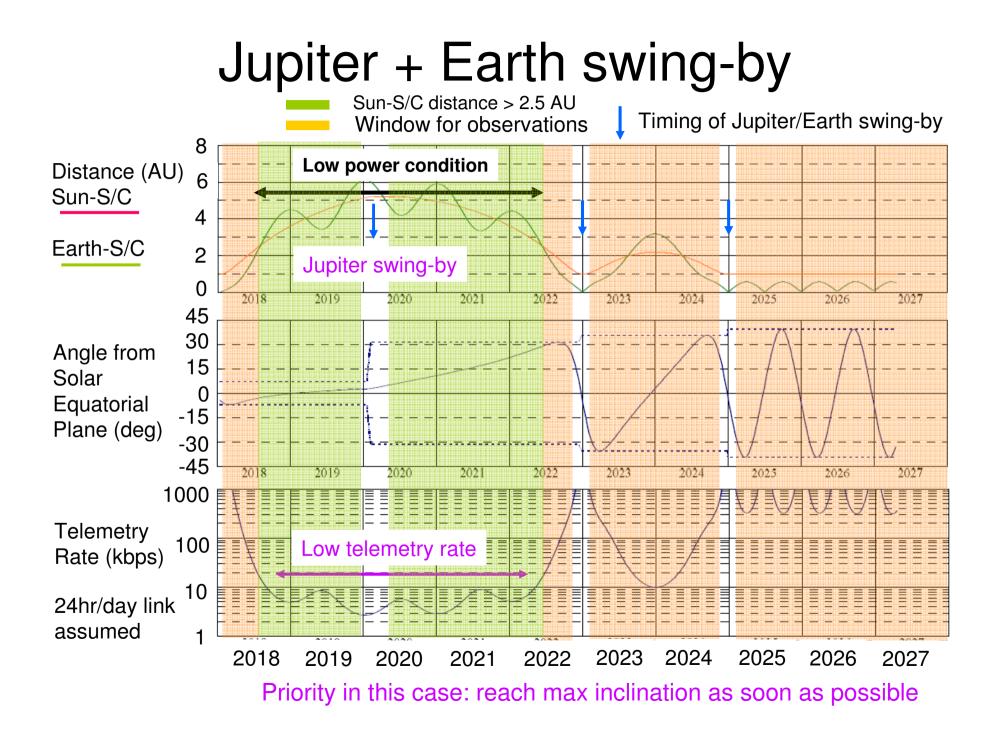

- Venus option (optionally surveyed)
- Jupiter option
- SEP option

Option-A orbit


- Near-Earth orbit using ion engine & Earth swing-by
 - Higher-priority orbit for Solar Physics, if technically feasible
 - High-data rate observations required for magnetic and helioseismic research
 - Limited imaging observations of the Sun during the use of ion engine if there is no active pointing mechanism on the payload
 - Launch opportunity: every 0.5 year
 - 40° inclination from solar equatorial plane,1AU distance, synchronized with Earth
 - It takes ~5 yr to achieve the target orbit.
- Jupiter swing-by + Earth swing-by (ballistic orbit)
 - Lower-data rate observations and lower spatial resolution before achieving target orbit
 - Observations are always possible except for swing-by operation
 - Launch opportunity: every ~1.1 yr
 - <u>36-40°</u> inclination from solar equatorial plane,1AU distance, synchronized with Earth
 - Shorten the orbital period by Earth swing-by. It takes ~7 yr to achieve the orbital period of 1 yr.

How is the solar poles seen as a function of inclination angle?

i : inclination angle from solar equatorial plane


Ion engine + Earth swing-by

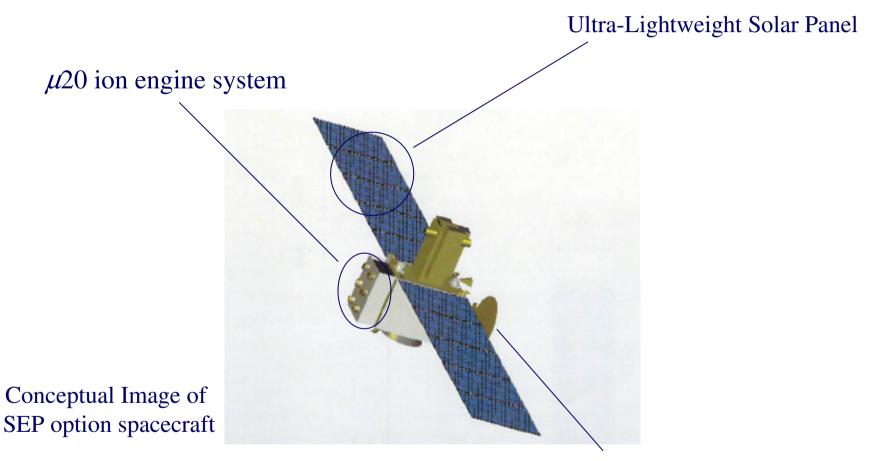
Technical Issues

in spacecraft system for SEP Option

- Option-A escaping from ecliptic plane
 - Kick-motor: no suitable kick motor for H II-A interplanetary mission
 - High power systems (~7 kW)
 - need high-efficiency power supply for operating ion engines toward further reduction of the S/C weight
 - need light weight solar array paddle (being developed in JAXA)
 - High telemetry rate in interplanetary space (~100 kbps data recording rate @0.6AU set as minimal required level)
 - not a high rate for NASA's S/C missions (slightly better in STEREO)
 - a key issue to enhance scientific return from helioseismology
 - needs downlink stations for deep space at both northern and southern hemispheres
 - High thrust ion engines (120 mN max)
 - endurance test of ENG model being performed at JAXA/ISAS
 - Heat exhaust from high-heat-generating components
 - found to be little problems after a thermal design for a model orbit

Jupiter Option Summary

- Compliance to the Mission Requirements
 - Reaches Solar Lat. 30 $^\circ\,$ in 2022 (assumes launch in 2018), and finally achieves 40 $^\circ\,$.
 - Spacecraft's mass budget permits instruments > 130kg.
 - Data transmission rate > 300kbps @ high Lat. region (> 30°) (from 2025).


Advantage

- Conservative sequence which does not require electric propulsion system.

Disadvantages

- Long duration before the observation starts (> 4 years). Far from both Sun and Earth during the transfer.
- Frequent observation of Solar Polar region (every a half year) starts from 2025.
- Good launch opportunity (to reach 40°) may be infrequent.
 (the next launch window in 2019 achieves Solar Lat. 37° with the similar sequence)

Key Technologies for SEP Option

Ka/X Communication System (also required in Jupiter option)

Ka/X Communication System (1)

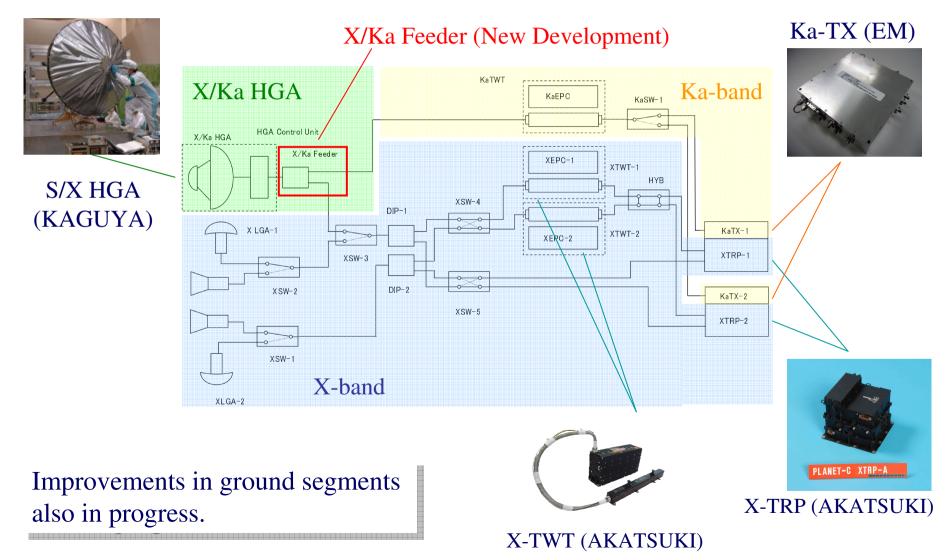
System concept

-X-band system

Mission requirement (300kbps @ 0.6AU telemetry) is achieved by redundant X-band system. It is equipped and well demonstrated in HAYABUSA, KAGUYA, etc.

-Ka-band system

To enhance the scientific achievements, a single Ka-band system is additionally equipped.


-Link budget

Item	X-band	Ka–band	Unit
Frequency	8400	32300	MHz
Transmitter Power	40.0	20.0	W
Transmit Antenna Gain	36.5	48.2	dBi
Communication Distance	0.56	0.56	AU
Bit Rate	300k	1M	bps
Link Margin	1.0	2.0	dB

Receive C/N0	59.3	64.6	dBHz
Required C/N0	58.4	62.6	dBHz

Ka/X Communication System (2)

System Configuration

SEP Option Summary

- Compliance to the Mission Requirements
 - Reaches Solar Lat. 30° in 2020 (assumes launch in 2017), and finally achieves 40° .
 - Spacecraft's mass budget permits instruments > 130kg.
 - Data transmission rate > 300kbps @ high Lat. region (> 30°) (from 2022).
- Advantages
 - Satisfy the most of the mission requirements.
 - Frequent launch windows (every half year).
- Disadvantage
 - Requires advanced technologies (electric propulsion system, etc.).

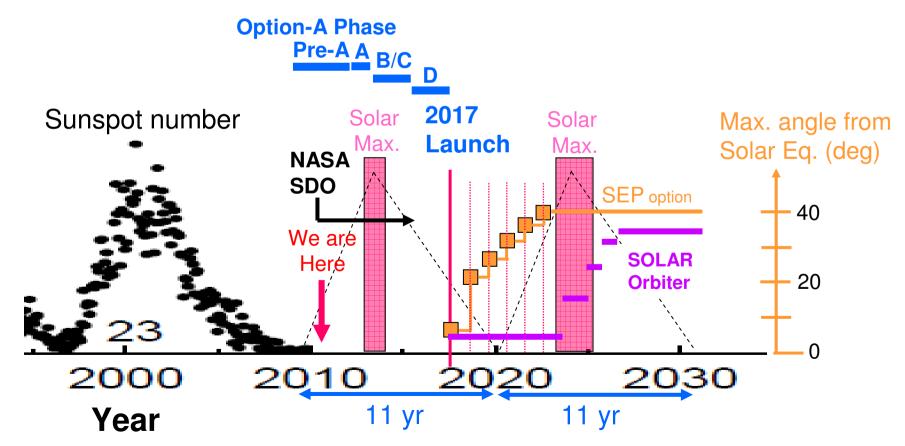
Trade-off Issues

- First Cost Estimate
 SEP (kick-motor + IES) > Jupiter (kick-motor) > Venus (no engines)
- Mission life: not clearly set, life-cost relation not yet investigated
- New development for orbit formation (assumption; use of H-IIA) SEP (kick-motor+IES), Jupiter (kick-motor), Venus (0.7AU test)
- Mission readiness

SEP option may need an ENG mission using $\mu 20$ ion engine before SOLAR-C.

• Final latitude degree:

40 deg (SEP) ~ 40 deg (Jupiter) > 25(2017L)-30(2020L) deg (Venus)


• Payload mass:

130 kg (SEP) ~ 130 kg (Jupiter) << > 400 kg (Venus)

- Time for final orbit formation (1AU distance from the Sun) Jupiter (7 yr) > SEP (5 yr) > Venus (3yr)
- Others

Provisional Schedule

- If Option-A needs to look at the polar polarity reversal in 2020's in a good observing condition, the launch of 2017/2018 is required in SEP option.
- In the baseline Jupiter option, the polar reversal may occur before S/C reaches the maximum inclination.

Synergy among multiple spacecrafts

3D Scanning of Heliosphere by Multiple Spacecrafts

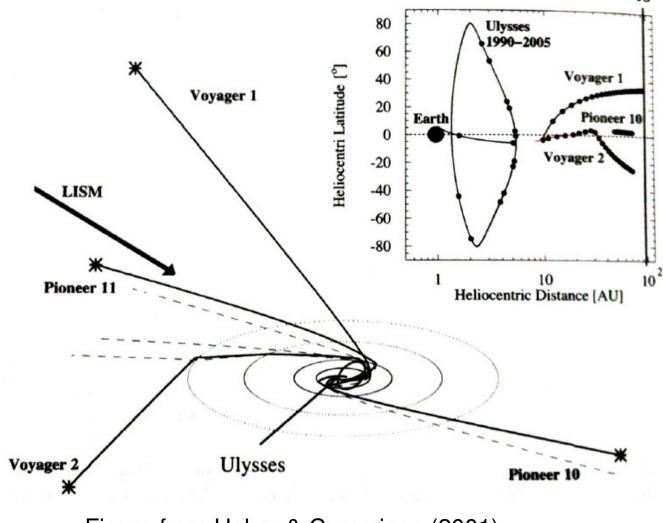
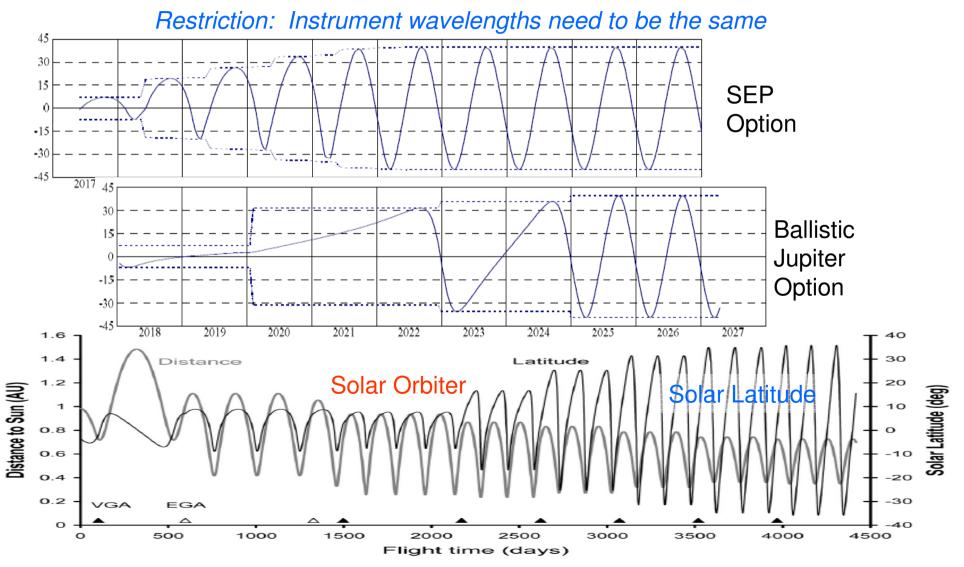



Figure from Heber & Cummings (2001)

Synergy between Option-A and SO

3D Scanning of the Sun by Multiple Spacecrafts

One spacecraft cannot cover both polar regions at one time.

Summary

- SOLAR-C Option-A is a mission to look at the Sun from an out-of-ecliptic orbit.
- We will observe features all over the latitudes on the sun and a wide rage of heliospheric latitudes at ~1AU:
 Magnetic fields, convection, internal rotation, meridional flows from magnetic and helioseismic observations, activity of upper atmosphere, source region of solar wind, and interplanetary in-situ measurements.
- Science in Heliospheric Physics has not been well discussed with heliophysics group. No updates since March.
- There are practical solutions for a spacecraft to enter a 40-deg inclination orbit with1-yr orbital period.
- The orbit with ion engines may be better at a glance, but there need many technical challenges. Due to this engineering issues, selecting the prime orbit for Option-A is not decided. Discussion is still going on.