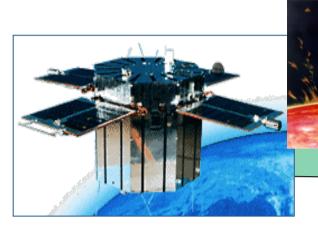
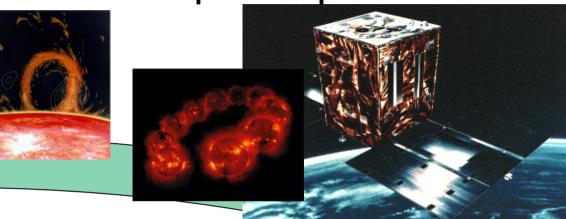
Agenda


- 10:30 Welcome, Greeting, and Logistics
- 10:40 11:30 Tsuneta Solar-C Overview
- 11:15 12:00 Newmark Solar-C NASA Point of View, JSSAC
- 12:00 13:00 Lunch Break
- 13:00 14:45 Shimizu Plan B (<45min)
- 14:45 15:15 Coffee Break
- 15:15 17:00 Hara Plan A (<45min)

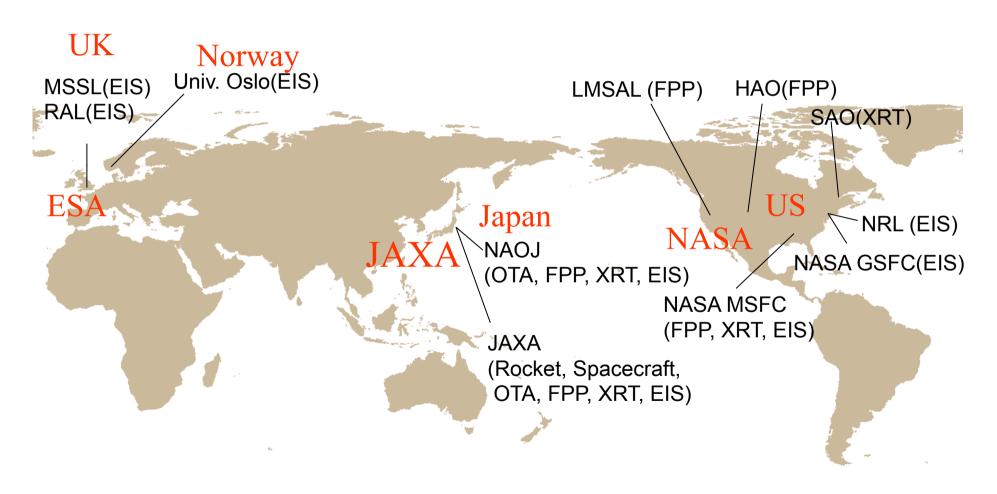
JAXA Solar-C Mission


Saku Tsuneta JAXA Solar-C WG

3rd SOLAR-C science definition meeting Palermo, Italy, October 10, 2010

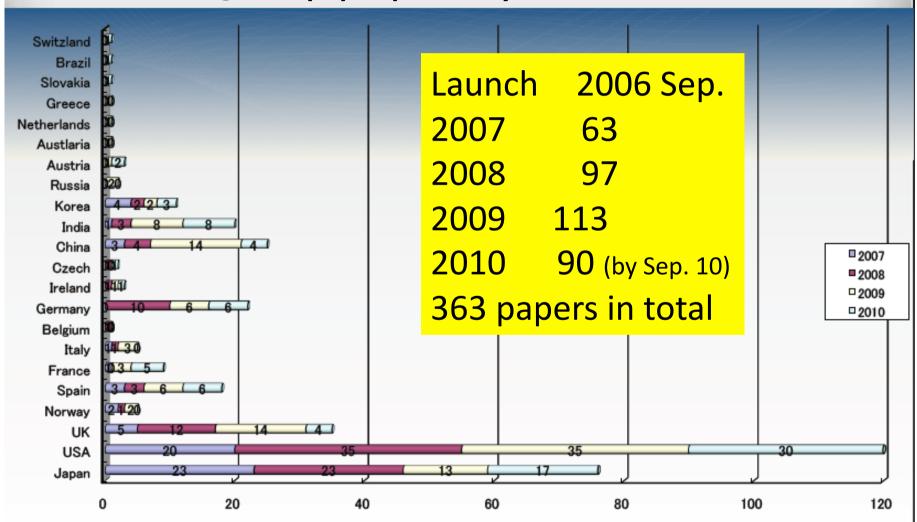
JAXA Solar Physics missions With NASA and ESA participation

Hinotori/ASTRO-A (1981–1982) ISAS


Yohkoh/SOLAR-A (1991–2001) ISAS, NASA, PPRAC

Hinode/SOLAR-B (2006–)
JAXA, NASA, STFC, ESA

Solar-C J-FY 2018


Strong international collaboration for SOLAR-B over 8 years

3 space agencies, 11 organizations in 4 countries

Hinode Open data policy: Acquired data is released imdiately

1 refereed paper per 3 days all over the world

"Country" is not mean the nationality of the first author. "Country" is the nationality of the institute of the first

Purpose of the meeting

JAXA Solar-C WG and NASA HQ have been discussing the potential collaboration for the Solar-C mission, and both agreed to form the NASA-JAXA Joint Solar-C Science Assessment Committee (JSSAC). The JSSAC will identify and assess new science opportunities with respect to a joint JAXA/NASA project, and identify a priority for each science goal of plan A and plan B. Additionally, a Decadal Survey for Solar and Space Physics has started in US, and the science objectives to be pursued ith Solar-C have to be properly recommended in the coming decadal-survey report. We anticipate submitting a single Solar-C proposal upon AO call in autumn 2011. Thus, the selection of the single plan has to be made relatively soon.

In this hectic situation, Solar-C working group (WG) with its sub-WG members has been preparing Interim report (hereafter Report) for both plan A and plan B. The Report is the fundamental documentation to define Plan A and plan B for solar physics and related science community and space agencies. Plan A and B selection will be made based on the written Report (science) and other factors such as cost estimate, technology readiness (TRL) and community-wide preference in Japan. The Report also serves as the source of stimulation and imagination for any of the international partners to scientifically and technically improve the mission design. The Report is also the guiding document for alignment of JSSAC with the JAXA Solar-C WG. The Report is expected to evolve into a Mission Proposal Document that Solar-C WG plan to submit to JAXA.

We plan to have 3rd Solar-C Science Definition Meeting (SCSDM) using the opportunity of the Hinode-4 meeting in Palermo following the successful 1st and 2nd SCSDM held at ISAS. The objective of the meeting is primarily that participants have common scientific understanding on both plans as described in the Report, and share the information on current status including JSSAC and on the future plan in Japan and US. The presentations include mission overview, instrument overview, brief technology overview (e.g. ion engines), summary of discovery space/breakthrough science, and synergy with other missions (e.g. SDO, Hinode, Solar Orbiter, Solar Probe Plus, etc). Since the announcement of the meeting is done so late, we plan to make all the presentations available through Solar-C web site.

Outline

- Introduction to Solar-C, Plan-A and B, including candidate instruments.
- Issues associated with two plans
- Recent & near-term Solar-C activities and milestones
- Possible areas of collaboration between NASA/ESA and JAXA

Two Solar-C Mission Concepts

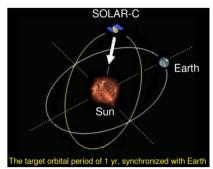
Plan A

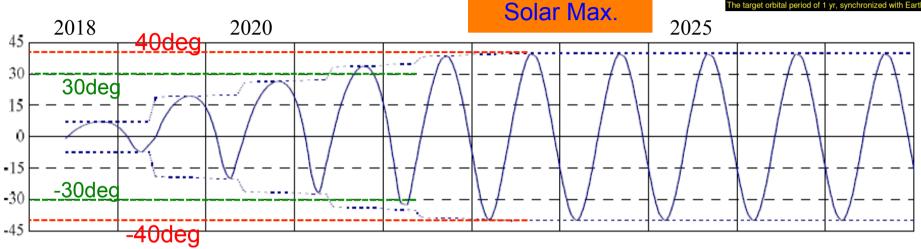
Out-of-ecliptic helioseismic/magentic observations of the polar regions to investigate internal rotation rate of the Sun, meridional flow, and magnetic properties of the polar region with EUV observations

Plan B

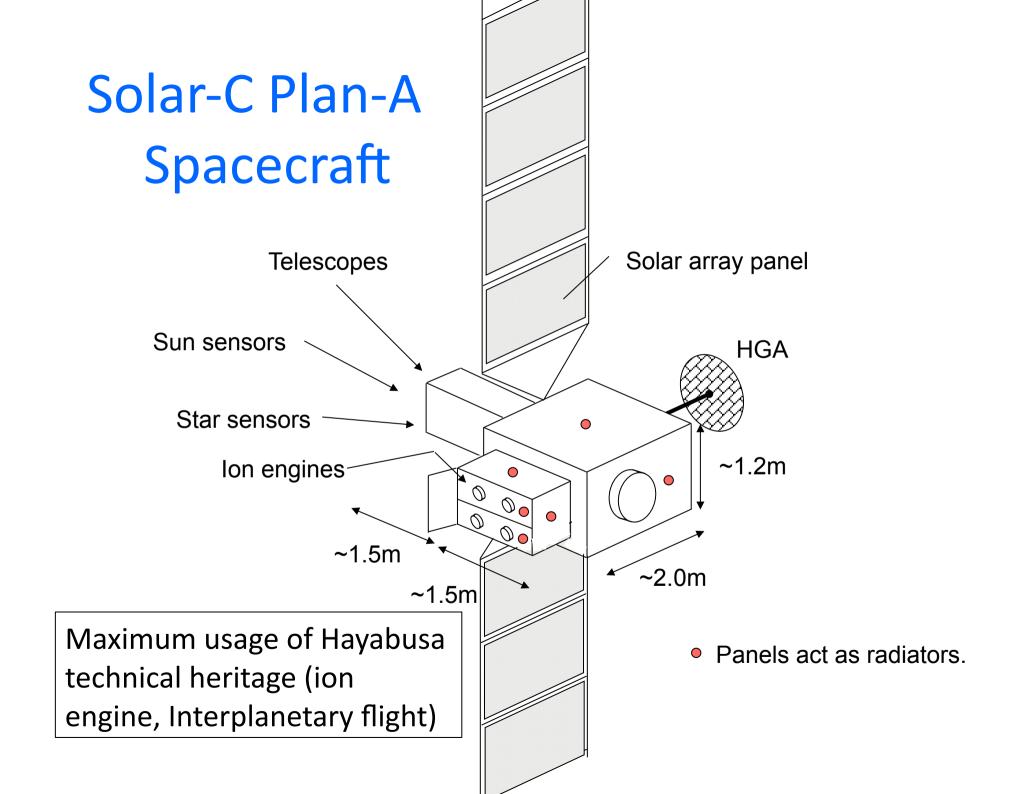
High spatial resolution, high throughput, high cadence spectroscopic (polarimetric) observations seamlessly covering photosphere to corona to investigate magnetism of the Sun and its role in heating and dynamism of solar chromosphere and corona

 Expects joint observations with highly complementary missions such as NASA SDO, NASA Solar Probe and ESA/NASA Solar Orbiter


Plan A: Out-of-ecliptic helioseismic/magnetic observations


- Polar region is unexplored important areas, and Plan A mission has significant discovery space.
- Plan A is an essentially helioseismic mission and is optimized accordingly
- Key Measurements:
 - Obtain internal rotation of the polar regions
 - Obtain sub-surface flow field of the polar regions including meridional circulation
 - Observe reversal of polar magnetic fields and reveal properties of polar fields
 - Constrain the solar dynamo process and improve our understanding as a result of these helioseismic and magnetic observations
 - Reveal acceleration mechanism of fast solar wind with magnetic and coronal observations on polar regions

Solar-C Plan-A Payload

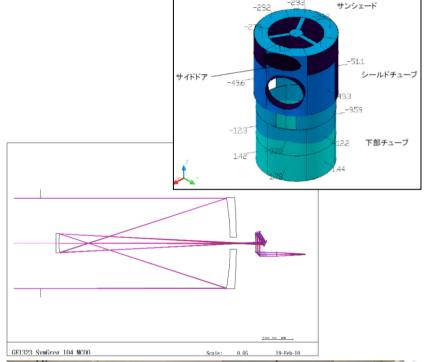

- Visible-light Doppler/Magnetic imager
 - Helioseismic/magnetic full-disk observations
- EUV/X-ray telescope or EUV imaging spectrometer
 - Coronal dynamics in polar regions
 - Flow/wave structures in polar regions (plumes, solar wind)
- Total irradiance monitor
 - Latitudinal distribution of surface irradiance
- Options
 - Heliospheric imager: CME imaging, solar wind/CIR shock structures
 - In-situ instruments

Near-Earth orbit using ISAS ion engine & Earth swing-by

- 40° inclination from solar equatorial plane, essentially maintaining
 1AU distance, synchronized with Earth
- ~3 yr to reach 30 degree and 5 year to reach 40 degree.
- Observations for North and south polar regions every half year even before reaching the observing point.
- Launch opportunity: every 0.5 year
- Orbit suitable for helioseismology in terms of observing duration for polar regions

Solar-C Plan A satellite weight, power and telemetry

- Weight ... 1.2 t (wet) total
 - Mission Payload ... 130 kg
 - S/C Bus (incl. ion engines) ... 698 kg
 - Thruster fuel ... 266 kg (For ion engines and chemical thrusters)
 - Margin ... 106 kg
- Power ... ~7 kW total
 - Ion engines ... ~5 kW
 - S/C Bus ... ~1 kW
 - Mission Payload + Margin ... ~1 kW

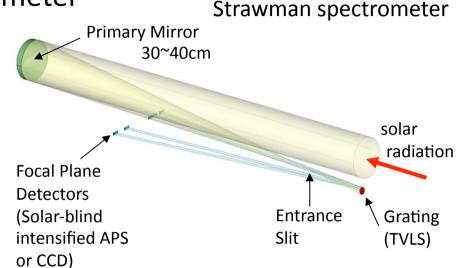

	Description	Note
Orbit Inclination	30 deg in 3 yrs (2021) 40 deg in 5 yrs (2023)	Assumes JFY 2018 launch.
Telemetry	300 kbps @ 0.5AU x 8hr/day ~ 100 kbps ave. [X-band Case]	Assumes 8 hrs of downlink/day. No Ka band station in Japan
	1 Mbps @ 0.5AU x 8hr/day ~300 kbps ave. [Ka-band Case]	

Plan B: High³ (spatial resolution, throughput, cadence) Imaging-Spectroscopic Observations

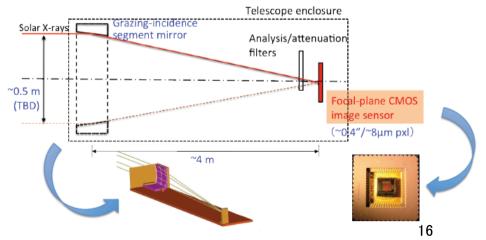
- Fine structures dictate the large-scale phenomena taking place in the Sun and heliosphere
 - Our guiding principle is that important physics is located in small scales
- Powerful combination of high resolution and spectropolarimetric capabilities for seamless observation of the entire solar atmosphere
 - Detect chromospheric vector magnetic fields
 - Reveal ultimate driver of the dynamism and heating of chromosphere and corona
 - Reveal physical properties of waves, turbulence, and reconnection in different layers of solar atmosphere
 - Reveal acceleration mechanism of the solar wind

Solar-C Plan B payloads (1)

- UV-Visible-Near IR telescope
 - The aperture size under study is 1.5 meter in diameter, which can accumulate one order of magnitude larger number of photons in an exposure time than Hinode SOT.
 - Spectro-polarimetric and imaging measurements of magnetic field and dynamics with chromospheric spectral lines
 - He 1083nm and Ca II IR(854nm)
 with Zeeman + Hanle effect
 sensitivity
 - Mg II k/h (280nm) most suitable for dynamics.
 - Variety of spectral lines available for diagnosing the wide range of the lower atmosphere from photosphere to chromosphere.

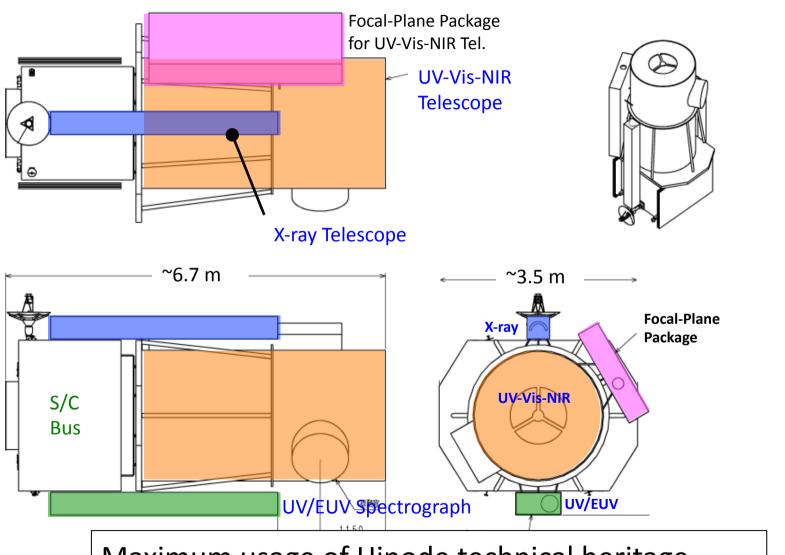


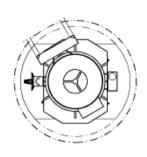
10.7.23 COSPAR 2010

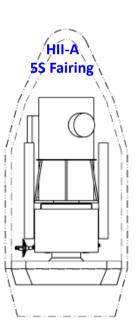

Solar-C Plan B payloads (2)

UV/EUV high-throughput spectrometer

- High throughput to increase high temporal cadence
- High spatial resolution better than ~ 0.5"
- The entire coverage of plasma temperature from the chromosphere, transition region to the corona and flare.
- Photon counting X-ray telescope
 - Imaging emissions from <1MK to 20 MK coronal plasma
 - Option 1) Photon counting capability for with grazing incidence telescope with 0.5 arcsec
 - Option 2) Ultra-high spatial resolution (~ 0.1arcsec) for normal incidence telescope


Photon-counting X-ray telescope


10.7.23


COSP

Solar-C Plan-B Spacecraft

Maximum usage of Hinode technical heritage (optical telescope assembly and S/C bus systems)

Solar-C Plan B Telemetry and Orbit

- High rate science telemetry is required to acquire spectroscopic/polarimetric data with high cadence and resolution. The current design target is the average data output of about 10Mbps from the onboard telescopes.
 - Data volume: 864Gbits in a day, c.f., Hinode ~36Gbits
- A conceptual study suggests an inclined geosynchronous orbit, similar to NASA SDO orbit, for the Plan B orbit.
- An X-band system (16Mbps, 16QAM) meets the requirement with the continuous link for >12 hours in each day.
- Another candidate is to use higher telemetry rate system available in Ka band. Note no heritage in Japanese science satellites to use Ka band for this kind of science data downlinks.

Multi-purpose nature of Solar-C interim Report

- Fundamental documentation to tell solar physics and related science community and space agencies what Plan A and B missions would be.
- Plan A and B selection will be made based on the written Report (science),
 separate cost estimate, and community-wide preference
- The Report serves as the source of stimulation and imagination for any of the international partners to scientifically and technically improve the mission design
- The Report is the guiding document for alignment of the NASA-JAXA JSSAC activity with the JAXA Solar-C WG. As above, this activity is not just for the decadal survey.
- The Report will evolve into Mission Proposal Document that Solar-C WG plan to submit to JAXA upon AO call in autumn 2011.

From s-WG charter 11 February 2009

 The relevant chapter documents may be revised when they are incorporated into the mission proposal. The SOLAR-C WG Chair reserves the right to ask the s-WGs for reconsideration regarding the content of the delivered documents if this becomes necessary. Language for the mission proposal shall be English.

Current status of interim report

- Still in early draft phase
- Plan B instrument sections are OK at this point
- Connections between instrument specification, observables, discovery space, and science driver are not yet well articulated
- Some sections need input from sun-WG
- We want to release the document in early December

Plan A and Plan B issues

Plan A

- Single purpose mission not aligned with Japan's science heritage is a concern
- Risk associated with ion-engine etc and long interplanetary flight should be carefully investigated
- ROM Cost-to-JAXA exceeds affordable level

Plan B

- Science delta in terms of Hinode, SDO and IRIS has to be clearly stated.
- Large telescopes are costly, and need excellent science justification
- ROM Cost-to-JAXA exceeds affordable level

More on Plan A

- Diagnostics of tachocline extremely difficult
 - Acoustic anomaly with 100 kG flux tube too weak to detect
 - Existence of toroidal flow driven by Coriolis force depends on too many assumptions
 - This should not be mentioned as prime charm of the mission
- Only sure science is to obtain surface and subsurface (meridional) flow and omega-distribution of the polar regions with local helioseismic technique.
- Magnetic field reversal will be well observed with Hinode.
 What can we do with SDO re meridiobal flow vs flux transport?

Plan B in crisis

- Primary driver for 1.5m telescope is to obtain precise measurement of chromospheric magnetic fields. However, Stokes inversion for chromospheric lines (except for the HeII) appears not feasible. This would make the plan B scientifically weak.
 - WG chair intends to ask the Chromosphere/ Corona Field Measurements s-WGs for advice.
- WG chair will also send Next Generation X-ray
 Telescope s-WG for questions on the scientific
 justification of 0.1 arcsec EUV NI telescope and TRL
 of photon counting GI telescope.

Recent International Activities

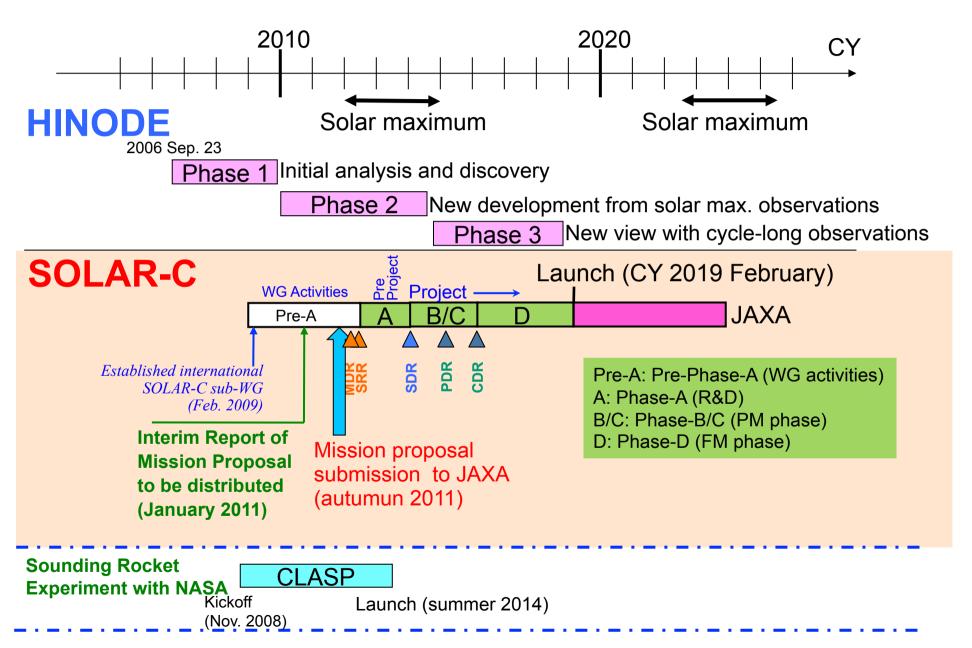
- Following the success of first International Solar-C Science Definition
 Meeting (Nov. 2008 at ISAS), international sub-WG were formed with
 participation of US and European scientists to produce technical reports.
- Second International Solar-C Science Definition Meeting (SCSDM2) held in Mar. 2010 at ISAS to review study results from the sub-WGs and to discuss Plan-A/B sciences.
- Inter-agency meeting held following SCSDM2 to discuss approach for international collaboration. Discussion particularly made for between JAXA-NASA.
- Development & assessment of Solar-C key technologies in progress with ISAS & JSPEC R&D funds in JAXA Solar-C WG.
- Communications between JAXA and NASA re Solar-C increased. Regarding ESA, Solar-C WG Chair (Prof. Tsuneta) visited ESA HQ in Apr. 2010 to discuss with Dr. Favata possible collaboration with ESA for Solar-C.
- ESA-JAXA bilateral meeting and NASA-JAXA discipline meeting on Solar-C held on September 17, 2010.

NASA-JAXA Joint Solar-C Science Assessment Committee (JSSAC)

- Agreed to establish in the Inter-Agency Meeting after SCSDM2 (March 2010).
- The primary purpose is to assess how each of the proposed Solar-C plans are aligned with the US and NASA science goals for the next decade. In addition to the Decadal survey, the report is important for NASA HQ.
- Committee discussion initiated in September, with the first face-to-face Committee meeting on 10 Oct. in Palermo, Italy.
- JAXA-NASA discipline-level meeting at NASA HQ on Sep. 17 on JAXA-NASA Solar-C collaboration

ROM Cost-to-JAXA exercise

- Plan A S/C bus cost was estimated based on Hayabusa cost reality and Marco polo cost estimate.
- Plan B S/C bus cost was estimated by two major aerospace companies.
 - 1.5m telescope for SOT/OTA (Optical Telescope Assembly) including
 M1/M2 was estimated based on Hinode efforts by one company.
 - Spectro-polarimeter cost has not yet be estimated.
- Launch cost with JAXA H-II is known.
- Salary for scientists, in-house engineers/technicians and institutional overhead not included in the Japan accounting system.
- Cost target is JAXA ASTRO-H (X-ray astronomy mission) cost + alpha. Significant cost reduction effort is necessary.


Possible Areas of Collaboration with NASA and ESA

- Provisional areas of collaboration
 - Launcher
 - Ka and/or X band downlink station
 - Science instruments
- Business model with ESA
 - Management of large scale multiple international collaborations is a major issue.
 - NASA will have a single project office possibly at NASA MSFC under NASA HQ.
 - Likewise, we prefer ESA's direct-involvement (rather than multiple bilateral collaborations with JAXA), following SPICA business model

Activity Related to ESA's Cosmic Vision II

- As an activity evolved from the UV/EUV Spectrograph sub-WG, our European colleagues are planning to propose within ESA's CV II programme, the EUV/VUV Telescope (and its associated Spectrographs and cameras) as European contribution to Plan-B of Solar-C. MPI Solar System Research will be the PI institution.
- JAXA Solar-C WG greatly welcomes and supports the application to CV II while at the same time recognizing the following issues should be taken into account:
 - At the time of proposal submission on December 5 to the CV II panel, it is likely that the final decision on Plan-A/B is yet to be made within Japan and the United States. The application to CV II will not affect Solar-C WG's Plan-A/B selection.
 - Solar-C WG wants to have Solar-C launch in J-FY 2018 (CY March of 2019 the latest) while launch for CV II is in 2020 or later. This mismatch for CV II launch has to be worked out.

Calendar for Years 2009–2020

Plan A vs B selection

- Plan A and B selection will be made based on the written Report (science) and other factors such as cost estimate, technology readiness (TRL) and community-wide preference in Japan.
- However, decadal survey time line is not consistent with such internal prioritization process. Hasty prioritization is a deep concern

Summary

- Either plan would significantly enhance our understanding of the internal structure of the Sun and the magnetized plasma of the Sun. Fundamental study with Solar-C will also enhance our prediction capability for societal impacts of space weather and climate.
- But, improvement and clarification in the Report are needed.
 Front-loading for this is critically important now.
- We will solicit public comments on plan A vs plan B inside Japan WG based on the Report in this December to know Japanese community preference.