Topics II Large Scale Explosions & Eruption flares, CME, and space weather

Sub-group of NGSPM team David E. McKenzie Lyndsay Fletcher Toshifumi Shimizu Kanya Kusano

Key scientific objectives

Key observations

Instrument requirements

Sub-objectives

- ^{1.} Measure <u>the energy build-up processes</u> in flaring and CME regions
- ^{2.} Identify <u>the trigger mechanism</u> of solar flares and CMEs
- ^{3.} Clarify <u>the mechanisms of destabilizing</u> and erupting of the entire system
- ^{4.} Understand the processes of <u>fast magnetic</u> <u>reconnection</u>
- ^{5.} Understand the formation mechanism of delta sunspot
- ^{6.} Understand the particle acceleration

II: Mechanism of large-scale solar eruptions and algorithm for prediction

	Sub-objectives	Tasks	Key Observations	Requirements	Instruments
11-1	Measure the energy build-up processes in flaring and CME regions	II-1-1: Measure electric current configuration reaching corona below from photospheric and chromospheric magnetic fields, and evolution of magnetic free energy	 Vector magnetic fields in photosphere and chromosphere Wide FOV covering AR Continuous observation for more than several days Data storage of large number of ARs 	Spectro-polarimetry e ~ $3x10^{-4}$ dx ~ $0.3''$, FOV > $300''$ T: $5000 ~ 10^{4}$ K dt < 10 min, Time span ~ 1week	SOLAR- C/SUVIT ASOT
		II-1-2: Measure development of magnetic structure of dark filament (prominence on disk) until eruption	 Vector magnetic fields of dark filament Wide FOV time-series photospheric vector magnetic fields 	Spectro-polarimetry e ~ $3x10^{-4}$ dx ~ $0.3''$, FOV > 300'' T: $5000 ~ 10^{4}$ K dt < 10 min, Time span ~ 1week	SOLAR- C/SUVIT ASOT
11-2	Identify the trigger mechanism of solar flares and CMEs	II-2-1: Observe plasma motions and fine magnetic structures interacting with surrounding fields before flare occurrence, and identify a key process to control the trigger in the majority of flares and CMEs.	 Vector magnetic and velocity fields in photosphere and chromosphere FOV covering AR Data storage of large number of events 	Spectro-polarimetry e ~ $3x10^{-4}$ dx ~ $0.3''$, FOV > 300'' T: $5000 ~ 10^{4}$ K dt < 10 min, Time span ~ 1 week Total data period > 1 year (for > $50events)$	SOLAR- C/SUVIT ASOT

1. Measure the energy build-up

NLFFF extrapolation

		Propertie	
Bin Level	Size (pixels)	Pixel Scale (Mm	
1	1129×837	0.106	
2	564×418	0.212	
3	375×278	0.318	
4	282×209	0.424	
6	187×138	0.635	
8	141×104	0.847	
10	112×82	1.06	
12	93×68	1.27	
14	80×58	1.48	
16	70×52	1.69	

DeRosa et al. 2015 ApJ THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING

Figure 1. Images of NOAA AR 10978 on 2007 December 13. Panel (a) shows the SOHO/MDI full-disk magnetogram at 12:46 UT, obtained within the interval of the Hinode normal-map scan used in this study. The image saturates at \pm 1000 Mx cm⁻². Panel (b) shows a logarithmically scaled Hinode/XRT images (Ti/Poly filter) averaged over the scan interval, for context. Representative Hinode/SOT-SP data are shown in the two smaller panels (both 162" × 162") at right: panel (c) is the continuum intensity, and panel (d) shows the longitudinal magnetic field derived from the Hinode polarization spectra (scaled to \pm 1500 Mx cm⁻²). The white boxes in

Measurement of Poynting Flux

Measurement of Poynting Flux & Helicity Flux

Test of velocity inversion (Welsch et al. 2007)

II: Mechanism of large-scale solar eruptions and algorithm for prediction

	Sub-objectives	Tasks	Key Observations	Requirements	Instruments
11-1	Measure the energy build-up processes in flaring and CME regions	II-1-1: Measure electric current configuration reaching corona below from photospheric and chromospheric magnetic fields, and evolution of magnetic free energy	 Vector magnetic fields in photosphere and chromosphere Wide FOV covering AR Continuous observation for more than several days Data storage of large number of ARs 	Spectro-polarimetry e ~ $3x10^{-4}$ dx ~ $0.3"$, FOV > 300" T: $5000 ~ 10^{4}$ K dt < 10min, Time span ~ 1week	SOLAR- C/SUVIT ASOT
		II-1-2: Measure development of magnetic structure of dark filament (prominence on disk) until eruption	 Vector magnetic fields of dark filament Wide FOV time-series photospheric vector magnetic fields 	Spectro-polarimetry $e ~ 3x10^{-4}$ $dx ~ 0.3"$, FOV > $300"$ T: 5000 ~ 10^4 K $dt < 10$ min, Time span ~ 1week	SOLAR- C/SUVIT ASOT
11-2	Identify the trigger mechanism of solar flares and CMEs	II-2-1: Observe plasma motions and fine magnetic structures interacting with surrounding fields before flare occurrence, and identify a key process to control the trigger in the majority of flares and CMEs.	 Vector magnetic and velocity fields in photosphere and chromosphere FOV covering AR Data storage of large number of events 	Spectro-polarimetry e ~ $3x10^{-4}$ dx ~ $0.3''$, FOV > 300'' T: $5000 ~ 10^{4}$ K dt < 10 min, Time span ~ 1 week Total data period > 1 year (for > $50events)$	SOLAR- C/SUVIT ASOT

Measurement of Flare Trigger

Opposite polarity

Change in B_h Wang 1992, Wang et al. 1994

MHD Simulation

Kusano & Itahashi (to be submitted)

Jing et al. 2016 Nature

Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

High cadence & High resolution

II:Mo and a	echanism of algorithm fo				
	Sub-objectives	Tasks	Key Observations	Requirements	Instrument s
11-3	Clarify the mechanisms of destabilizing and erupting of the entire system	II-3-1: Identify MHD instability mode by observing dynamical changes of coronal structure and electric current system	 High-resolution coronal images, velocity fields covering AR Time cadence to track erupting process photospheric vector magnetic fields and morphological changes of chromospheric thread structures 	Spectro- polarimetry e ~ $3x10^{-4}$ $dx \sim 0.3"$, FOV > 300" T: 5000 ~ 5×10^{6} K dt < 20sec, Time span ~ 1week	SOLAR-C ASOT+cor oan

Which Instability?

Which instability ?

Ishiguro & Kusano (to be submitted)

	lechanism of	large-scale solar eru	iptions and algorithm		
f <mark>or</mark> p	prediction				
	Sub-objectives	Tasks	Key Observations	Requirements	Instruments
11-4	Understand the processes of fast magnetic reconnection	II-4-1: Observe discontinuity of chromospheric magnetic fields (current sheets)	 Vector magnetic fields of upper photosphere ~ chromosphere 	Spectro- polarimetry e ~ $3x10^{-4}$ $dx \sim 0.3"$, FOV > 300" T: 5000 ~ 10^{4} K dt < 20sec, Time span ~ 24hr	SOLAR- C/SUVIT
		Clarify relations between the reconnection rate and the guide field in the solar chromosphere and the corona	 High-resolution coronal images, velocity fields Chromospheric image with chromospheric vector magnetic field Coronal vector magnetic field Coronal vector magnetic field measured by Zeeman and Hanle effect or extrapolated from chromospheric and photospheric magnetic field FOV covering AR 	Spectro- polarimetry e ~ $3x10^{-4}$ $dx \sim 0.3"$, FOV > 300" T: 5000 ~ 5×10^{6} K dt < ? sec, Time span ~ 1week	SOLAR-C ASOT+corona DKIST
		 II-4-2: Observe growing process and motion of plasmoids in current sheets that could drive the fast magnetic reconnection II-4-3: Observe discontinuous structures of density and temperature associated with coronal magnetic reconnection and verify relations of shock waves and plasma heating 	 Images and velocity fields resolving elementary structures in corona at multiple temperatures (10⁵~5×10⁶K) Time cadence capable of tracking fast motions of plasma Photometric accuracy capable of detecting faint structure 	dx ~ 0.3" , FOV > 300" T: 5000 ~ 5 × 10 ⁶ K Dt < 20sec, Time span ~ 1week	SOLAR- C?EUVST&HCI

Fast Magnetic Reconnection

- What determines the reconnection rate?
 - $M \sim 10^{-2 \pm 1} \gg S P$ theory $(S^{-1/2} \sim 10^{-7})$
- What is the role of plasmoids.

Shibayama, Kusano, et al. 2015 sporadic small-scale Petschek-type shocks

Sheet st

(Takasao et al. 2012)

Imaging

II: Mechanism of large-scale solar eruptions and algorithm for prediction						
	Sub-objectives	Tasks	Key Observations	Requirements	Instruments	
11-5	Understand the formation mechanism of delta sunspot					
11-6	Understand the particle acceleration		 Stokes profiles in chromospheric lines Continuum spectrum including Balmer jump Radio burst Gyro-synchrotron radiation Hard X-ray, γ-ray 			