

The Solar-C Science Meeting

9-Sep-2016

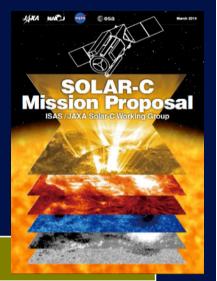
The Meeting Agenda

1. Solar-C WG: Progress report: Tetsuya Watanabe (15 min)

 Science Objectives Team of Next Generation Solar Physics Mission (NGSPM-SOT): Aims and activity report: Toshifumi Shimizu (20 min)

- 3. Scientific Objectives for NGSPM
- I. Formation of dynamic atmosphere: Kiyoshi Ichimoto (20 min)
- II. Large scale explosions & eruptions: Kanya Kusano (20 min)
- III. Cyclic variation of solar magnetism: Hirohisa Hara (20 min)
- 4. Discussion
- a. Possibility of MIDEX mission: James Klimchuk (20 min)
- b. General discussion

5. AOB


eesa

February 2015

The Solar-C Working Group progress report

Tetsuya Watanabe (NAOJ) Solar-C WG (ISAS/JAXA) Office for Solar-C (NAOJ)

Scientific Objectives

Main Scientific Objectives

Understand the plasma dynamics as a system that connects the solar surface to the solar corona and interplanetary space

Investigate the elementary processes that take place universally in cosmic plasmas, the both of which also contribute to the comprehension and the prediction of solar activity that could give impact on the earth and the human

Three Scientific Objectives for Study

- Investigate the formation mechanisms of the chromosphere, the corona, and the solar wind
- II Understand the physical origin of largescale-solar eruptions to extract the algorithm for prediction
- III Reveal the mechanism of solar spectral irradiance variation that could influence the climate change of the earth.

SOLAR-C S/C and Strawman Payloads

Three advanced telescopes

•SUVIT (Solar UV-Vis-IR Telescope)

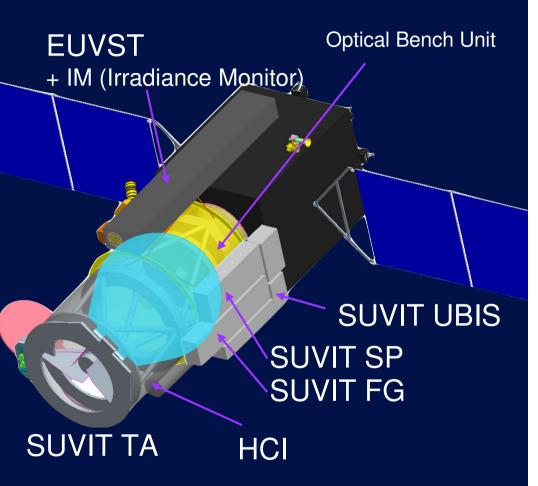
Spectropolarimetry for photospheric & chromospheric magnetic fields with spatial resolution of 0.1"~0.2"

Aperture: ~1.4m (Hinode × 3)

•EUVST (EUV Spectroscopic Telescope)

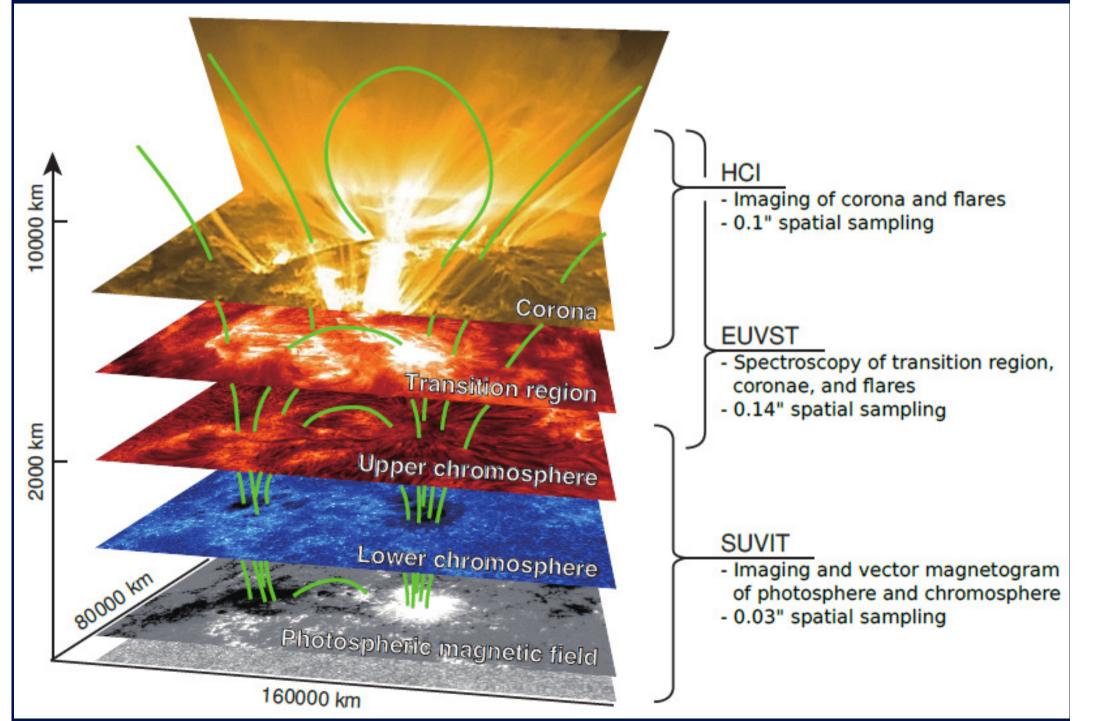
Spectroscopy for upper atomospheric layers with increased plasma diagnostic capability

Spatial resolution: Hinode × 5 Sensitivity: Hinode × 10

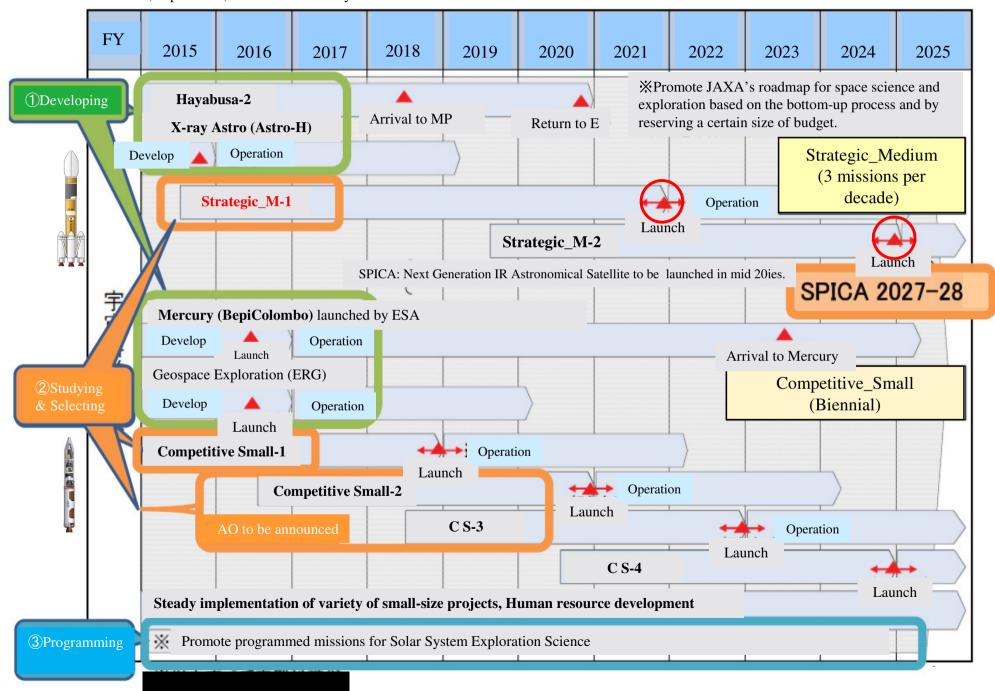

•HCI (High resolution Corona Imager)

Wide FOV coronal imaging with spatial resolution of 0.3" Spatial resolution: Hinode × 10

-IM (Irradiance Monitor)


Total & UV spectral irradiance monitor

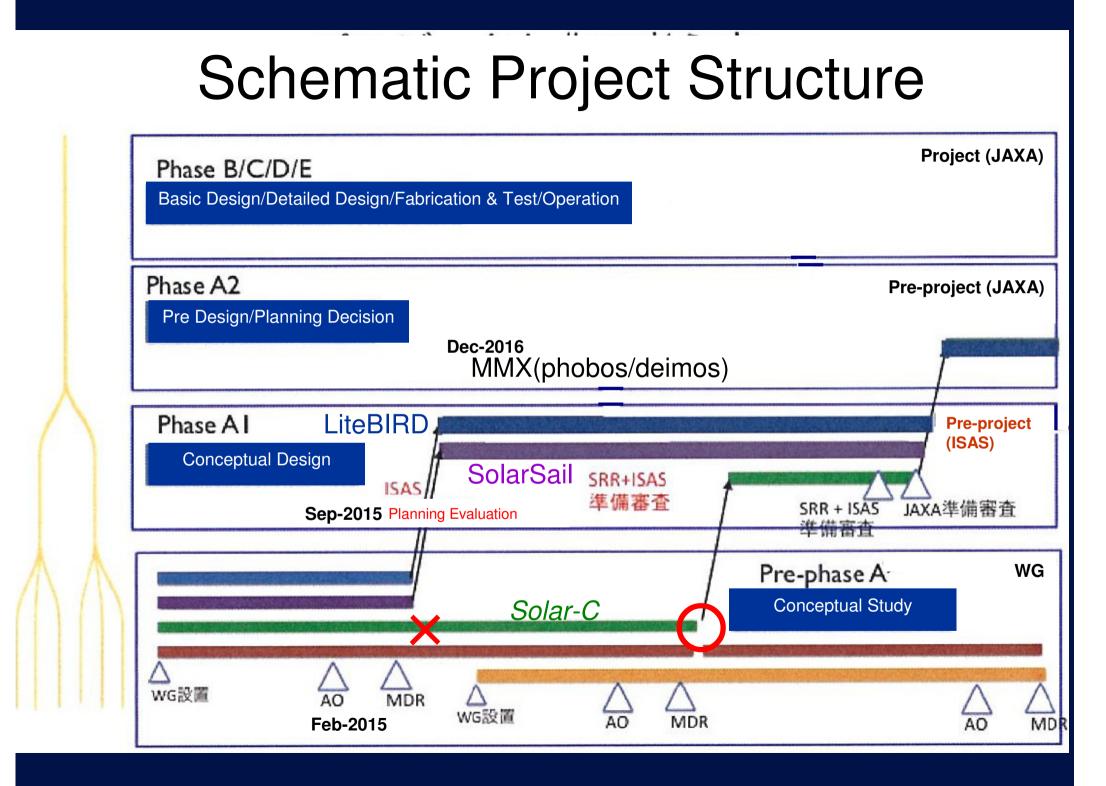
EPIC for ESA/M4


weight	2300 kg (w/o fuel)
size	3.5 m x 3.0 m x 7.3 m
Data rate & Data volume	8 Mbps (ave) (Hinode × 20) DR ~200 GB
Orbit	Geo-synchronous

Strawman Payload

Space Science Roadmap (2015/01/09)

Science, exploration, and manned-activity


Solar-C WG programmatic chronology

SOLAR-C for strategic medium 1

16-Feb-2015 25-Feb-2015 ~ E/Apr-2015 13-May-2015 4/5-Jun-2015 9-Jun-2015

26-Jun-2015 Sep-2015 Submission of proposal MDR (mission definition review) under SSC

ISAS/JAXA Evaluation Committee (EC) starts up EPIC for ESA/M4 - not selected Space policy subcommittee : Start up of strategic-med missions Final Report from SSC Assessment of EC : Re-study @WG→resubmit proposal (to clear MDR)

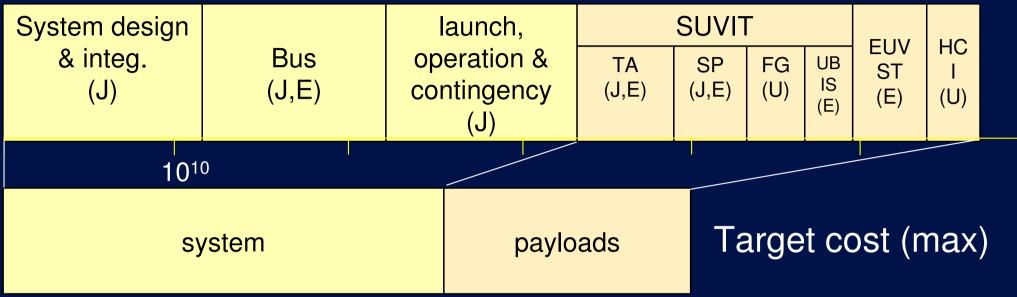
Solar-C WG

☆ Early Preparation of "*Nominal*" Plan Nominal: JAXA – Str. Med (L) + ESA & NASA – MoOs levels] Cost reduction with Focused science Synergy with other missions/facilities (SOLO, DKIST, ...)

 \Leftrightarrow Promotion of International Collaboration more feasible/affordable NASA: Setup of STDT \rightarrow JSSDT? ESA: Seek for MoOs

 \rightarrow MDrR (mission definition re-review)

Science objects of Solar-C (proposed in 2015)


I. Formation mechanism of chromosphere, corona and solar wind				
I-1	Spicules	Foot point B topology, shock, twist, etc.		
I-2	Nano-flare heating	Tiny brightening, non-thermal plasma		
I-3	Wave heating	Wave mode, energy flux, dissipation		
I-4	Solar wind acceleration	B topology in CH, Alfven wave in corona		
I-5	Prominence	B field structure, mass circulation		
II. Physical origin of large-scale eruptions and algorithm for prediction				
II-1	Energy storage	Photo./chrom. B field maps		
II-2	Trigger mechanism	Emerging flux, interaction with chrom.B		
II-3	Mechanism of explosion	Large scale dynamics, current system		
-4	Physics of fast reconnection	Current sheet, plasmoid, shock		
III. Mechanism of solar spectral irradiance variation				
III-1	Mechanism of UV emission	UV emissions at fine scale B structure		
III-2	TSS/SSI modeling	TSI/SSI, fulldisk B map		

Science objects of Solar-C (being revised)

I. Formation mechanism of chromosphere, corona and solar wind				
I-1	Chromspheric jets and heating	Foot point B topology, shock, twist, etc.		
I-2	Nano-flare heating	Tiny brightening, non-thermal plasma		
I-3	Solar wind acceleration	B topology in CH, Alfven wave in corona		
I-4	Mechanism of prominence	B field structure, mass circulation		
I-5	Non ideal MHD effect	Effect of neutral atoms; B & v structures		
II. Physical origin of large-scale eruptions and algorithm for prediction				
II-1	Energy storage	Photo./chrom. B field maps		
II-2	Trigger mechanism	Emerging flux, interaction with chrom.B		
II-3	Mechanism of explosion	Large scale dynamics, current system		
II-4	Physics of fast reconnection	Current sheet, plasmoid, shock		
II-5	Formation of δ spots	B fields		
II-5	Particle acceleration	B fields, radio, hard X-rays, γ-rays		
III. Origin of solar cycle and space climate variability				
-1	Mechanism of UV variability	UV emissions at fine scale B structure		
III-2	TSS/SSI modeling	TSI/SSI, fulldisk B map		

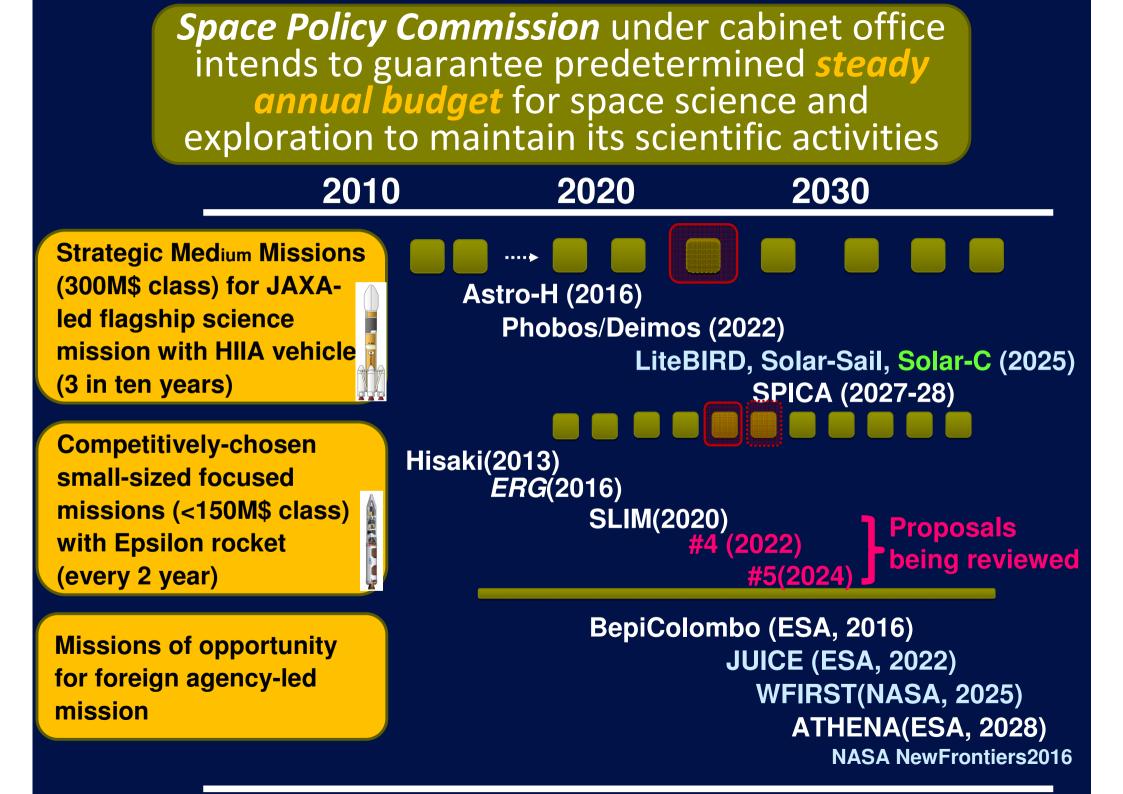
Toward the new Solar-C; mission size issue

Total cost of 2015 proposed Solar-C ~ 5.8 x 10¹⁰ JPY

Target of mission size

Reduce the total cost from 5.8 to 4 (JAXA + 2MoO), or even 3.5 or even 3!

- JAXA 3 (target value), Astro-H 3.4 is the upper limit.
- NASA Mo0 0.5, ESA Mo0 0.5


Establish the firm scheme of international task share

Strategy Reduce the cost of launch vehicle (H-IIa \rightarrow H-III) and bus components Reduce the cost of SUVIT($\Phi \sim 1.4m \rightarrow 1m$, combined SP+FG) Reduce payload by collaborating with other space missions

Cost estimate (as of 2016 Feb 11)

Unit: 10⁸ JPY ~ 10⁶ USD

	2015 proposed	2016 under study
SUVIT TA/IU	66	55 J-SP full cost 39
″ SP	40	Plus US-FG TBD
″ FG	40 (Combined SP+FG (target)
″ UBIS	40	
EUVST	70	55 (ESA only) Plus Consortium 30
HCI	40	(Optional) (includ. US contrib)
IM	3	
Management/system design	12	10
System/bus	123	113
Test/launch ope.	25	25
Ground facilitty, etc.	5	5
Operation	9	9
Contingency	19	20 (for J-contribution BUS + SUVIT
Launcher	95	60 (H-III, geo-synchronous)
total	587	402

