NASA MidEx

with strong Japanese (and other) participation

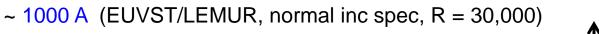
J. A. Klimchuk, NASA/GSFC

- A MidEx would be a smaller mission to fill the gap before Solar-C (not a substitute)
- ~ \$200M excluding launch vehicle
- AO probably in late 2018 or early 2019
- Positive initial reactions from Steve Clarke and Saku Tsuneta
- A Japanese Epsilon-class mission with strong NASA participation is another gap filling option
- In addition to or instead of Solar-C?

Science Focus

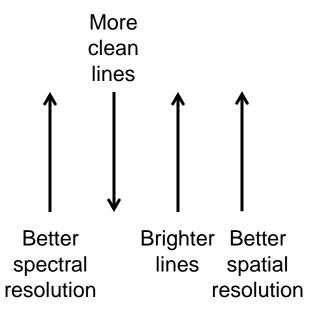
• Option: Coronal science of the original Solar-C

(EUV imaging spectrograph and/or high-res coronal imager)


Solar-C could then have an expanded emphasis on the lower atmosphere

- Option: Something entirely different
- Need to coordinate the two missions

5-10 MK Temperature Regime


- Largely unexplored -- a discovery space
- Observe plasma as it is energized, not after it has cooled and valuable information has been lost
- Provides direct information about the energy release process
 Magnetic reconnection: Petschek, plasmoids, or turbulence?
- Breakthroughs in understanding coronal heating, jets, CMEs, flares, etc.
- Need line profiles for information on spatially unresolved plasmas

Comparative Wavelength Regions

- ~ 100 A (EUNIS, normal inc spec, R = 10,000)
- ~ 10 A (MaGIX, grazing inc spec, R = 1000) (Solaris-X, microcal, R = 1000)

 $R = \lambda/\Delta\lambda = 10,000 \leftrightarrow 30$ km/s

Fe XVIII	Fe XIX	Fe XX	Fe XXI
<u>logT = 6.85</u>	<u>logT = 6.95</u>	<u>logT = 7.00</u>	<u>logT = 7.05</u>
974.86 46 93.93 39 14.20 6	1118.05 47 108.35 50 13.52 5	121.84 46 12.82 4	1354.06 121 128.75 99 12.28 9

courtesy A. Daw