Daniel K. Inouye Solar Telescope: Collaborations and synergies between DKIST and SOLAR-C

> V. Martínez Pillet, T. Rimmele & DKIST Team National Solar Observatory

Outline

- 1. Where is Solar Physics Heading?
- 2. Why 4m?
- 3. DKIST Status
- 4. Solar-C & DKIST collaborations

Where is Solar Physics Heading?

Accurate measurements of the Magnetic Field from the interior of the Sun all the way into the Heliosphere

(Interior/Photosphere/Chromosphere/Corona)

Measuring **B** in the TR & Corona

- Forbidden line <u>FeXIII 10747 Å off disk</u>, Hanle saturated. Stokes V from Zeeman
- 10⁻⁴ pol. accuracy was needed for observations with arcsecs (t_{exp} minutes !)
- <u>MgII h & k line (2795 Å)</u>: upper chromosphere & TR. Stokes V expected large. k line sensitive to Hanle effect: 10-100 G fields.
- <u>HI Lyα (1215 Å)</u> off disk will provide full vector in the range 10-100 G for 1 R_{sun}
- <u>HI Ly α (1215 Å) on disk transition region</u>: full vector in the range 10-100 G
- Japanese led CLASP experiment

Explore the 10⁻⁴ limit

± 5 10 ⁻⁴	
----------------------	--

The origin of the Quiet Sun fields

Martínez Pillet 2013

- At 10⁻³ (saturation) large voids are evident in deep magnetograms
- 250 loops in a 45x45 arcsec² FOV and in 30 minutes
- Loop emergence is not uniformly distributed
- It seldom occurs within the voids
- These voids are very unlikely (3 10⁻⁴)

Loop emergence at meso/supergranular sizes? Are the granular fields still hidden (10⁻⁴) from our resolution/sensitivity

2014/09/17

The origin of the Quiet Sun fields

Why were Hinode & SUNRISE successful?

Resolution & photons

I < 100 km is photon mean free path & H_p (scale height)

l=100 km (20.1 arcsec) requires

 $t_{exp} \propto \frac{\phi/2}{v_c} \rightarrow 25 \text{ seconds. } \underline{Polarimetry} \text{ forces it to be } 25/4 \approx 6 \text{ s}$ Science requires $\underline{SNR} \approx 10^4$ $(m_o = -10.7 \text{ magnitudes/arcsec}^2, \phi_{px} = \phi/2)$ $D = \frac{SNR}{\sqrt{0.7N10^{-0.4m_o} \tau \Delta \lambda Q} t_{exp} \phi_{px}^2} \rightarrow D \approx 4.6\text{m}$ <u>We need the photons !</u>

DKIST: 4m class

<u>Spectropolarimetry is a major driver in the design of our</u> <u>flagship facility and its instrumentation:</u>

Clear aperture coronagraph, imaging, spectroscopy and polarimetry of rapidly evolving features

DKIST: 4m class

VBI : Visible Broad band imager

- •Wavelength range:
- 380–900 nm •Spatial resolution:
- •Spatial FOV:

- 0.03" @ Hα 2×2 arcmin²
- Real-time speckle

ViSP: Visible Spectropolarimeter

•Wavelength range: 380–900 nm • Up to three lines simultaneously/fast reconfig (10 mins) •Spatial resolution: 0.03"/pixel •Spatial FOV: 2×2 arcmin² •Spectral Resolution: *R* ~ 3.5 pm at 630 nm

VTF: Fabry-Perot tunable Spectropolarimeter

•Wavelength range: •Spatial resolution: •Spatial FOV: •Spectral Resolution:

520-860 nm 0.03" 1x1 arcmin² *R* ~ 3.5 pm at 630 nm

DL-NIRSP: Diffraction Limited NIR Spectropolarimeter

- •Wavelength range: •Spatial resolution: •Spatial FOV:
- 900–2300 nm 0.03-1"/pixel 2.4x1.8 arcmin²

Cryo-NIRSP: Cryogenic NIR Spectropolarimeter

- •Wavelength range: •Spatial resolution: •Spatial FOV:
- 1000–5000 nm 1" (corona) 3x4 arcmin²

DKIST

- Co-Investigators
 - P. Goode (NJIT),
 - M. Knoelker (HAO),
 - J. Kuhn (IfA),
 - B. Rosner (U.of Chicago)

NJIT ETHE UNIVERSITY OF CHICAGO

Instrument Partners

- University of Hawaii
 - CRYO-NIRSP, PI: Jeff Kuhn
 - DL-NIRSP, PI: H. Lin
- High Altitude Observatory
 - ViSP, PI: R. Casini
- Kiepenheuer Institute, Germany,
 - Visible Tunable Filter, MCAO Development, PI: O. vd Luhe
- UK (proposal submitted)
 - Visible Detectors, PI: M.Mathioudakis, Belfast
- Spain (MOU in progress)
 - Polarimetric analysis PI: Jose Carlos del Toro Iniesta, Granada

Full operations begin in 2019

DKIST Operations

"operate more like a space mission"

Solar-C & DKIST collaboration

DKIST will measure the Coronal magnetic field in these critical areas.

Perhaps using as yet unknown spectral features

Solar-C & DKIST collaboration

$$r_0 = 0.185\lambda^{6/5}\cos^{3/5}\zeta \left[\int (C_n^2(h)dh) \right]^{-3/5}$$

Call H imaging: A Hinode success story

The blue is hard from the from the ground: AO has a much harder job

2014/09/17

Solar-C & DKIST collaboration

Solar-C & DKIST collaboration: the next <u>Golden Age</u> for Solar Magnetism

2014/09/17

有難う御座います

SDO/AIA- 193 20121005_234407

