活動領域形成理論・フレア発生理論と Solar-C計画への期待

鳥海 森¹, 草野 完也^{2,3}

1. 国立天文台, 2. 名古屋大学, 3. JAMSTEC

日本天文学会2014年秋季年会 (2014 Sep. 13)

1. イントロダクション

▶ そもそも「活動領域」とは?

- ▶ 磁場の強い領域。しばしば黒点を含む
- オ 太陽フレア・CMEによって莫大なエネルギーを放出する

1. イントロダクション

オ そもそも「活動領域」とは?

- ▶ 磁場の強い領域。しばしば黒点を含む
- オ 太陽フレア・CMEによって莫大なエネルギーを放出する

1. イントロダクション

- 活動領域の形成過程: 浮上磁場
 - オ 表面磁場データ(SDO/HMIマグネトグラム:5日間)

1. イントロダクション

- 活動領域の形成過程:浮上磁場
 - オ 太陽内部から磁束が浮上することで形成 (Parker 1955)

1. イントロダクション

「2段階浮上」モデル (Toriumi & Yokoyama 2012 ほか)

- オ シミュレーション研究
 - シアしたコロナ磁場中にトリ ガ磁場が出現することでフレ アが発生
 - オ 低層大気 (~彩層高度)の磁気 リコネクションによってフ ラックスロープが形成

Kusano et al. (2012)

- ▶ シミュレーション研究
 - オ 低層大気 (~彩層高度)の磁気 リコネクションによってフ ラックスロープが形成
 - トリガ磁場の方位角によって
 フレア発生の成否が決定

オ シミュレーション研究

- オ 浮上磁場シミュレーション
 - シミュレーションの「問題点」

Toriumi & Yokoyama (2012)

▶ 浮上磁場シミュレーション

3.00

-2.00

Toriumi & Yokoyama (2012)

0.00

-1.00

1.00

- ▶ 浮上磁場シミュレーション
 - 「解決策」:磁気リコネクション

「抵抗性浮上」モデル

- ▶ 浮上磁場シミュレーション
 - 「解決策」:磁気リコネクション

 \checkmark

▶ 凸型の磁力線同士が低層大気 でリコネクション

「抵抗性浮上」モデル

- ▶ 浮上磁場シミュレーション
 - **7** 「解決策」:磁気リコネクション ↓
 - オ 凸型の磁力線同士が低層大気 でリコネクション
 - プラズマを下方へ排出し磁場 が上空へと浮上

「抵抗性浮上」モデル

- オ 浮上磁場シミュレーション
 - 「解決策」:磁気リコネクション
 - オ 小規模現象が、活動領域の大 規模な成長に寄与している可 能性
 - オ 光球・彩層での観測的検証が 重要な現象

「抵抗性浮上」モデル

- オ 関連する観測研究
 - ▶ 「ひので」、IRIS、SDO衛星による浮上磁場領域の観測

NOAA 11974

- オ 関連する観測研究
 - ▶ ひので、IRIS、SDO衛星による浮上磁場領域の観測

NOAA 11974

オ 関連する観測研究

ひので、IRIS、SDO衛星による浮上磁¹ IRIS 133

4. まとめと課題

ㅋ まとめ

- ▶ フレアトリガ磁場
 - オ コロナ磁場に局所磁場が突入
 - オ 低層大気 (~彩層高度)で磁気 リコネクション
 - オ局所磁場の角度によってフレ ア発生の可否が決定される

- ▶ 小規模な磁束消滅現象
 - 問題点:従来シミュレーションでは磁場が浮上しない
 - 7 解決策:低層大気における小 規模な磁場リコネクション
 - 小規模イベントが大規模な活動領域形成に寄与

これらは「彩層磁場」観測の格好のテーマ

4. まとめと課題

↗ 課題

- **オ** スペクトルの複雑さ
 - スペクトルのみから状況を把握するのは困難
 - ↗ IRIS:輻射磁気流体シミュレーション によるモデル大気を提供
 - 静穏領域:良さそう
 - 活動領域:恐らく再現不可能?
 - オ Solar-Cでは「磁場」も入ってくる

Mg II kスペクトル

- キャンセレーション領域
- ・ 強いブルーシフト(~100 km/s)?
- 視線方向の重ね合わせ効果?

Thank you for your attention!

Appendix

- オ データ駆動型シミュレーション
 - ▶ シミュレーションの境界条件
 - ▶ 現状:光球の3次元磁場データを 利用して上空の磁場を推定
 - Cheung et al. (in prep): ジェットを
 生じた周囲の磁場環境を再現、
 IRIS観測と比較
 - ▶ 彩層観測のメリット
 - オ 光球磁場・彩層磁場観測から磁場 勾配を計算 → 電流場を推定可能
 - 7 密度・エネルギーフラックスなど も観測できればシミュレーション の精度を向上できる

(b) B_z at z = 4 Mm Cheung et al. (2014, in prep)

Appendix

- ▶ フレアトリガの特定
 - ▶ 複数の「容疑者」
 - オ 実際の活動領域には多数のフレア トリガ的な磁場構造が存在
 - 現状「真犯人」の発見は「事件」 が発生してから
 - オ 観測視野が狭いため、事前にある 程度「容疑者の絞り込み」が必要
 - **オ** シミュレーションの改良
 - ↗ PIL上のトリガを
 - 複数箇所、ランダムに挿入
 - 浮上磁場シミュレーション結果な どを利用
 - etc...
 - オ 誰が「犯人」か事前に推定できる ように

Hinode/SOT Na Stokes-V/I 13-Feb-2011 17:30 UT

