

Solar-Cで探る 磁気リコネクションの物理

Shinisuke Imada (Nagoya Univ., STEL)

Plasmas conditions in solar corona

Difference from collisionless plasma

- Momentum transfer by coulomb collision 衝突による運動量交換
- Thermal conduction along magnetic field 衝突による熱伝導
- Ionization and recombination
 衝突による電離・再結合
- Radiative energy loss (not synchrotron radiation)
 衝突による輻射

What plasma parameter control the energy conversion rate?

Target of MRX obs.

- Heating associated with/without slow-shock.
 Electron heating
 Ion heating (Possible???)
- Alfvenic flow

Doppler shift measurement

Ionization information

• Particle acceleration

Supra-thermal & High energy electron acc.

Standard model for Solar Flare Hot & Fast Flow should be observed!

Hara et al. 2011 ApJ RX flows

Thermal Non-Equilibrium Plasma

Because RX is highly dynamic, plasma may not reached to **Equilibrium stage!** This is new regime for Solar physics obs.

- Non-Gaussian Distribution function
- ガウス分布でない \rightarrow Power-law distribution, beam plasma time scale for equilibrium is very short (kinetic regime or e-e or i-i collision)
- Different temperature in different species
 - \rightarrow Ti>Te

time scale for equilibrium is relatively long プラズマ種で平衡でない (e-i collision)

電離非平衡

- Ionization non-equilibrium
 - \rightarrow strong heating or flare time scale for equilibrium is long

Ionization Process

Fe13+ Fe14+ Fe15+ Fe16+ Fe17+ FeXIV FeXV FeXVI FeXVI FeXVII FeXVIII ionization recombination $\frac{\partial n_i^Z}{\partial t} + \nabla \cdot n_i^Z v = R_i^Z$ $(Z = 1, \dots, N_{\text{elem}}) \quad (i = 1, \dots, N_{\text{ion}}^Z),$

where

$$R_{i}^{Z} = n_{e} \left[n_{i+1}^{Z} \alpha_{i+1}^{Z} + n_{i-1}^{Z} S_{i-1}^{Z} - n_{i}^{Z} \left(\alpha_{i}^{Z} + S_{i}^{Z} \right) \right],$$

- α collisional and dielectronic recombination
- S collisional ionization

We can discuss the history of heating!

Example of Ionization Calculation

How to diagnose MRX region?

Ionization process with line spectroscopy Spatial resolution is enough to resolve.

Scanning time <100s

Fast scanning (<Alfven time~100s) with high throughput spectrometer. Wide temperature coverage.

Diagnose velocity, temperature, density with spectroscopic observation!

How to diagnose MRX region?

Sweet-Parker .vs. Petschek RX

= 5.

20

15

Bhattacharjee+, 2009

Yokoyama&Shibata, 1997 Without conduction \longrightarrow = 5

10

4

2

-2

-4

0

5

N 0 **Sweet-Parker like RX**

Heating is localized

inside CS

Heating region is larger by Slow-mode Shock etc.

まとめ

- Solar-Cでは格段にeffective area が大きくなる
- 高時間分解能で観測が可能になる
- 多波長での分光観測
- ・ 迷光・散乱光等のノイズを極力軽減

- ・電離過程から加熱の履歴(時間)を診断する事
 を目指す
- Forward modeling または inversionから短い時間
 スケールの現象を診断可能に!

Strategy to solve

電離非平衡計算結果

初期条件:電離平衡

点線:電離平衡 実線:電離非平衡

RX 2D calculation + Time dependent ionization

MHD

Ionization

We have to improve our code in some points (e.g., numerical diffusion).

Coronal Heating :Observation Ion Temperature

彩層蒸発計算 CANS

パラメータ	変数	無次元値	有次元值	_
ループ半長	L	130	$26000~\mathrm{km}$	
遷移層高さ	$x_{ m tr}$	12.5	$2500~\mathrm{km}$	
コロナ温度	$T_{ m cor}$	200	$2 \mathrm{MK}$	ÌÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
フレア加熱	$H_{ m f0}$	5×10^{-4}	$3 {\rm ~erg~ cm^{-3}~ s^{-1}}$	\ \ \ \≢/ / / /
フレア範囲	$w_{ m f}$	30	6000 km	
フレア時間	$ au_{ m f}$	12	240 s	
熱伝導強度	κ_0	3×10^{-11}	10^{-6} cgs	
冷却強度	Λ_0	10^{9}	$8 \times 10^{-22} \text{erg s}^{-1} \text{ cm}^3$	
冷却基準温度	$T_{ m cl}$	20	$2 \times 10^5 {\rm ~K}$	
冷却臨界密度	$n_{ m cl}$	10^{-5}	$10^{12} { m cm}^{-3}$	
光球温度	T_0	1	$10^4 \mathrm{K}$	
光球密度	$ ho_0$	1	$10^{17} {\rm ~cm^{-3}}$	(a)
光球圧力スケール長	\mathcal{H}_0	1	$200 \mathrm{km}$	
光球音速	$C_{ m S0}$	1	$10 \ \mathrm{km/s}$	
光球音波横断時間	$ au_0 \equiv \mathcal{H}_0 / C_{\mathrm{S0}}$	1	20 s	26IVIM
光球重力	g_0	$1/\gamma$	$270 \mathrm{~m/s^2}$	

彩層蒸発計算(CANS-1DHD)

開始から20秒後

鉄イオン別の上下フラックス

まとめと今後の展望

- ・電離非平衡+彩層蒸発(1DHD)の計算は可能 になった
- 近年のEISの分光観測によってFeXV等で impulsive phaseに~50km/sec程度の下降流が 観測されている
- 電離非平衡計算+流体計算によって再現を試 みた結果、FeXVで下降流を作る事は可能たが、 定量的には説明困難
- 熱伝導速度飽和やエネルギーインプットの仕方の違い等の可能性も考える必要が
- Solar-Cに向けて、Forwardモデリングを完成させ、
 フレアでのエネルギー解放を議論できるように