コロナ加熱・太陽風駆動機構でこれま で分かったことと,未解明問題 Solved & Unsolved Problems in the Coronal Heating & the Solar Wind Acceleration

鈴木 建 (Takeru K. Suzuki)

名古屋大学 理 物理 (Physics Dept., Nagoya University)

Sep.13th, 2014

Energy/Momentum/Mass transfer in the atmosphere

Energy/Momentum/Mass transfer in the atmosphere

 Extract the kinetic energy of the surface convective turbulence

- Energy/Momentum/Mass transfer in the atmosphere
- Extract the kinetic energy of the surface convective turbulence
- Lift up the energy to upper layers

- Extract the kinetic energy of the surface convective turbulence
- Lift up the energy to upper layers
- The energy dissipates at appropriate locations

In Situ Heating in the Corona & Wind

- Extract the kinetic energy of the surface convective turbulence
- Lift up the energy to upper layers
- The energy dissipates at appropriate locations

In Situ Heating in the Corona & Wind

"Type II spicule" (De Pontieu+ 2011): Direct supply of hot gas

- Extract the kinetic energy of the surface convective turbulence
- Lift up the energy to upper layers
- The energy dissipates at appropriate locations

In Situ Heating in the Corona & Wind

"Type II spicule" (De Pontieu+ 2011): Direct supply of hot gas

- : negligible contribution
- need heating against the adiabatic loss (e.g. Klimchuk 2011)
- IRIS observed falling back of Type II spicules (Pereira+ 2014)

Energy Flux
=
$$\rho v_{\parallel} \left(v^2/2 + h - GM/r \right) + v_{\parallel} B_{\perp}^2 / 8\pi - B_{\parallel} v_{\perp} B_{\perp} / 4\pi$$

h: enthalpy

- K.E.= Kinetic Energy
- T.E.= Thermal Energy
- G.E.= Gravitational Energy
- P.F.= Poynting Flux

Energy Flux = $\rho v_{\parallel} \left(v^2/2 + h - GM/r \right) + v_{\parallel} B_{\perp}^2 / 8\pi - B_{\parallel} v_{\perp} B_{\perp} / 4\pi$ *h*: enthalpy

- K.E.= Kinetic Energy
- T.E.= Thermal Energy
- G.E.= Gravitational Energy
- P.F.= Poynting Flux

K.E.

- K.E.= Kinetic Energy
- T.E.= Thermal Energy
- G.E.= Gravitational Energy
- P.F.= Poynting Flux
- K.E.
- 𝔅 K.E.⇒ P.F.

- K.E.= Kinetic Energy
- T.E.= Thermal Energy
- G.E.= Gravitational Energy
- P.F.= Poynting Flux
- **1** K.E.
- 8 P.F.⇒ T.E.

- K.E.= Kinetic Energy
- T.E.= Thermal Energy
- G.E.= Gravitational Energy
- P.F.= Poynting Flux
- K.E.
- ③ P.F.⇒ T.E.
- ∂ P.F. + T.E.
 ⇒ K.E. + G.E.

- K.E.= Kinetic Energy
- T.E.= Thermal Energy
- G.E.= Gravitational Energy
- P.F.= Poynting Flux
- K.E.
- **⊘** K.E.⇒ P.F.
- 8 P.F.⇒ T.E.
- ∂ P.F. + T.E.
 ⇒ K.E. + G.E.

Classification ?

Classification ?

Classification of Regions

Withbroe & Noyes (1977)

	- 3			
Region	CH	QS	AR	
LOSS(erg/cm ² s)	8×10^{5}	3×10^5	107	
Туре	Wind	Cond. & Rad.	Rad.	
Open ⇐		⇒ Closed ?		

CH=Coronal Holes; QS=Quiet Regions; AR=Active Regions

Classification ?

Classification of Heating

• Reconnection (DC)

• Wave (AC)

 $\tau_{\text{motion}} > \text{Or} < \tau_{\text{Alf}}$ The difference is vague -e.g. waves with short duration.

Classification of Regions

Withbroe & Noyes (1977)

Region	ČН	QS	AR	
LOSS(erg/cm ² s)	8×10^{5}	3×10^5	107	
Туре	Wind	Cond. & Rad.	Rad.	
Open ⇐	·	⇒ Closed ?		

CH=Coronal Holes; QS=Quiet Regions; AR=Active Regions

Fluctuation at the Photosphere • δv_{\perp} in QSs by local correlation tracking

• δB , δv_{los} , & δI in pores & IMS near an AR

IMS=intergranular magnetic structure

IMS=intergranular magnetic structure

Sufficient energy in the surface convection

- Sufficient energy in the surface convection
- But, most of energy (≥ 90%) is reflected back.

- Sufficient energy in the surface convection
- But, most of energy (\geq 90%) is reflected back.
 - Consistent with numerical simulations. Suzuki & Inutsuka 2005; Cranmer+ 2007; Verdini & Velli 2007

Sufficient Energy flux
 (≈ (4 – 7) × 10⁶ erg/cm²s)
 with transverse waves
 via spicules.

- Sufficient Energy flux
 (≈ (4 7) × 10⁶ erg/cm²s)
 with transverse waves
 via spicules.
- But, complexities
 - Reflection
 - Short lifetime
 - $(P_{\rm w} \lesssim \tau_{\rm life})$
 - filling factor

HINODE/SOT obs of a CH boundary

Okamoto & De Pontieu 2011

OBS: waves with short period ($\leq 100 \text{ s}$)

- Sufficient Energy flux
 (≈ (4 7) × 10⁶ erg/cm²s)
 with transverse waves
 via spicules.
- But, complexities
 - Reflection
 - Short lifetime
 - $(P_{\rm w} \lesssim \tau_{\rm life})$
 - filling factor

Each event seems nice, but spatial (⇔ filling factor) & time (⇔ lifetime) integration ?

HINODE/SOT obs of a CH boundary

Okamoto & De Pontieu 2011

OBS: waves with short period ($\leq 100 \text{ s}$)

Propagation to chromosphere ?

(Okamoto+ 2007)

Lines: P(v) at Photosphere

- Solid: Matsumoto & Kitai 2010
- Dashed: Chitta+ 2012

P(v): Chromosphere – Photosphere

Lines: P(v) at Photosphere

- Solid: Matsumoto & Kitai 2010
- Dashed: Chitta+ 2012

Turbulent cascade to higher-frequency from photosphere to chromosphere ?

P(v): Chromosphere – Photosphere

Spectroscopic OBSs always suffer from the projection effect.
 ⇒ Tiny flux

e.g. 10(erg/cm²s) Tomczyk+2007

- Spectroscopic OBSs always suffer from the projection effect.
 ⇒ Tiny flux e.g. 10(erg/cm²s) Tomczyk+2007
- OBS of lateral motions
 ⇔ numerical simulation.
 ⇒ (1-2) × 10⁵ (erg/cm²s) McIntosh+2011

- Spectroscopic OBSs always suffer from the projection effect.
 ⇒ Tiny flux e.g. 10(erg/cm²s) Tomczyk+2007
- OBS of lateral motions
 ⇔ numerical simulation.
 ⇒ (1 2) × 10⁵ (erg/cm²s) McIntosh+2011
 However, Criticism

- Spectroscopic OBSs always suffer from the projection effect.
 ⇒ Tiny flux e.g. 10(erg/cm²s) Tomczyk+2007
- OBS of lateral motions
 ⇔ numerical simulation.
 ⇒ (1 2) × 10⁵ (erg/cm²s) McIntosh+2011
 - However, Criticism
 - a filling factor, f = 1?? $F_{\rm A} \approx f \rho \delta v^2 v_{\rm A}$

- Spectroscopic OBSs always suffer from the projection effect.
 ⇒ Tiny flux e.g. 10(erg/cm²s) Tomczyk+2007
- OBS of lateral motions
 ⇔ numerical simulation.
 ⇒ (1-2) × 10⁵ (erg/cm²s) McIntosh+2011
 - However, Criticism
 - a filling factor, f = 1?? $F_{\rm A} \approx f \rho \delta v^2 v_{\rm A}$
 - Simulation ??

- Spectroscopic OBSs always suffer from the projection effect.
 ⇒ Tiny flux e.g. 10(erg/cm²s) Tomczyk+2007
- OBS of lateral motions
 ⇔ numerical simulation.
 ⇒ (1 2) × 10⁵ (erg/cm²s) McIntosh+2011
 - However, Criticism
 - a filling factor, f = 1?? $F_{\rm A} \approx f \rho \delta v^2 v_{\rm A}$
 - Simulation ?? Pure OBS by the same method gives (0.9 - 2.4) × 10⁴(erg/cm²s)

Thurgood+ 2014

Transverse Waves in Corona –contd.

SDO/AIA obs (Thurgood+ 2014)

Transverse Waves in Corona –contd.

SDO/AIA obs (Thurgood+ 2014)

Kink waves

- Weakly compressive
- Observable with δI

Kink waves

- Weakly compressive
- Observable with δI
- Torsional waves
 - Incompressive
 - Νο *δΙ*

• Kink waves

- Weakly compressive
- Observable with δI
- Torsional waves
 - Incompressive
 - Νο *δΙ*

Hidden energy flux in torsional waves in fine-scale tubes ???
⇔ Observation of helicity in the corona Curdt & Tian 2011

Longitudinal Waves in Corona Plenty of Observations

Longitudinal Waves in Corona Plenty of Observations \leftarrow observable by δI

Plenty of Observations \leftarrow observable by δI

• Long-period slow waves in CHs (Ofman+ 2000 & more)

Plenty of Observations \leftarrow observable by δI

- Long-period slow waves in CHs (Ofman+ 2000 & more)
- Norikura obs. of QSs gives 15(erg/cm²s) (Sakurai+2002)
 ← projection effect ?

Plenty of Observations \leftarrow observable by δI

- Long-period slow waves in CHs (Ofman+ 2000 & more)
- Norikura obs. of QSs gives 15(erg/cm²s) (Sakurai+2002)

 ← projection effect ?
- ARs
 - Loop oscillation by TRACE (De Moortel+ 2000 & more)
 - Associated with outflows (Nishizuka & Hara 2011)
 - Both transverse & longitudinal waves (Kitagawa+ 2010)

Plenty of Observations \leftarrow observable by δI

- Long-period slow waves in CHs (Ofman+ 2000 & more)
- Norikura obs. of QSs gives 15(erg/cm²s) (Sakurai+2002)
 ← projection effect ?
- ARs
 - Loop oscillation by TRACE (De Moortel+ 2000 & more)
 - Associated with outflows (Nishizuka & Hara 2011)
 - Both transverse & longitudinal waves (Kitagawa+ 2010)

Longitudinal (slow MHD) waves from the photosphere cannot reach the corona.

Plenty of Observations \leftarrow observable by δI

- Long-period slow waves in CHs (Ofman+ 2000 & more)
- ARs
 - Loop oscillation by TRACE (De Moortel+ 2000 & more)
 - Associated with outflows (Nishizuka & Hara 2011)
 - Both transverse & longitudinal waves (Kitagawa+ 2010)

Longitudinal (slow MHD) waves from the photosphere cannot reach the corona. ⇒ These waves are excited via

Plenty of Observations \leftarrow observable by δI

- Long-period slow waves in CHs (Ofman+ 2000 & more)
- Norikura obs. of QSs gives 15(erg/cm²s) (Sakurai+2002)

 ← projection effect ?
- ARs
 - Loop oscillation by TRACE (De Moortel+ 2000 & more)
 - Associated with outflows (Nishizuka & Hara 2011)
 - Both transverse & longitudinal waves (Kitagawa+ 2010)

Longitudinal (slow MHD) waves from the photosphere cannot reach the corona. ⇒ These waves are excited via

• Nonlinear mode conversion from Alfvénic waves Hollweg 1982; Kudoh & Shibata 1999; Moriyasu+ 2004; Antolin+2008; Matsumoto & Shibata 2010; Antolin & Shibata 2010

Plenty of Observations \leftarrow observable by δI

- Long-period slow waves in CHs (Ofman+ 2000 & more)
- Norikura obs. of QSs gives 15(erg/cm²s) (Sakurai+2002)

 ← projection effect ?
- ARs
 - Loop oscillation by TRACE (De Moortel+ 2000 & more)
 - Associated with outflows (Nishizuka & Hara 2011)
 - Both transverse & longitudinal waves (Kitagawa+ 2010)

Longitudinal (slow MHD) waves from the photosphere cannot reach the corona. ⇒ These waves are excited via

- Nonlinear mode conversion from Alfvénic waves Hollweg 1982; Kudoh & Shibata 1999; Moriyasu+ 2004; Antolin+2008; Matsumoto & Shibata 2010; Antolin & Shibata 2010
- Reconnections or motion of loops Sturrock 1999; Nishizuka+ 2009; Kigure+ 2010

XRT obs (Sakao+ 2007)

EIS obs of a CH near an AR

(Imada+ 2007; 2011)

EIS obs of a CH near an AR

(Imada+ 2007; 2011)

EIS obs of a CH near an AR

(Imada+ 2007; 2011)

Solar-Y (arcsec)

Warren+ 2010 see also Brooks & Warren 2012

EIS obs of a CH near an AR

(Imada+ 2007; 2011)

Warren+ 2010 see also Brooks & Warren 2012

- Heated loops = upflows
- Cooled loops = downflows

Outflows in CHs

Outflows in CHs

Outflows in CHs

Blue-shifted (outflow) regions gradually dominate with $T \uparrow$
Outflows in CHs

Shiota+ 2012

Blue-shifted (outflow) regions gradually dominate with $T \uparrow$ \Leftarrow Merging of super-radially open flux tubes

Tsuneta+ 2008

Shimojo & Tsuneta 2009

- kG-patches (Tsuneta+ 2008; Ito+ 2010)
 ⇔ X-ray bright points
 - Triggered by reconnection events?
 - Excite Alfvénic waves (Cirtain+ 2007)

- kG-patches (Tsuneta+ 2008; Ito+ 2010)
 ⇔ X-ray bright points
 - Triggered by reconnection events?
 - Excite Alfvénic waves (Cirtain+ 2007)
- Contribute to ~ 10% of \dot{M} of the solar wind $_{_{(Cirtain+2007)}}$

⇐ Estimated occurrence rate of X-ray jets

Heating in AR Corona

Heating in AR Corona Filling factor – δv

Kano+ 2014

Similar studies for QS & CH are important.

• *B* at Photosphere ⇔ Injection of Poynting Flux

• *B* at Photosphere ⇔ Injection of Poynting Flux

- *B* at Photosphere ⇔ Injection of Poynting Flux
- Distribution of Flare Energetics
 Nanoflare heating
 - \Rightarrow Contribution to Coronal Heating ?

Shimizu 1995; Sakamoto+ 2009

- *B* at Photosphere ⇔ Injection of Poynting Flux
- Distribution of Flare Energetics
 Nanoflare heating
 - ⇒ Contribution to Coronal Heating ?

Shimizu 1995; Sakamoto+ 2009

Height dependence of Non-thermal δv
 ⇔ Dissipation of Alfvénic waves

Hara & Ichimoto 1999; Banerjee+ 2009; Hahn+ 2012

- *B* at Photosphere ⇔ Injection of Poynting Flux
- Distribution of Flare Energetics
 Nanoflare heating
 - ⇒ Contribution to Coronal Heating ?

Shimizu 1995; Sakamoto+ 2009

Height dependence of Non-thermal δv
 ⇔ Dissipation of Alfvénic waves

Hara & Ichimoto 1999; Banerjee+ 2009; Hahn+ 2012

Footpoint of Solar Wind

-Plume vs Interplume- Krishna Prasad+ 2011

- *B* at Photosphere ⇔ Injection of Poynting Flux
- Distribution of Flare Energetics
 Nanoflare heating
 - ⇒ Contribution to Coronal Heating ?

Shimizu 1995; Sakamoto+ 2009

Height dependence of Non-thermal δv
 ⇔ Dissipation of Alfvénic waves

Hara & Ichimoto 1999; Banerjee+ 2009; Hahn+ 2012

• Footpoint of Solar Wind

-Plume vs Interplume- Krishna Prasad+ 2011

- Solar–Stellar–Astro Connection
 - Stellar Flare Stellar Corona Stellar Wind
 - Protoplanetary Disks

• Driving Poynting Flux:

 Driving Poynting Flux: well-done

- Driving Poynting Flux: well-done
- Propagation/Reflection:

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating
 - X-ray flux in ARs

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating
 - X-ray flux in ARs
 - Need Further studies in QSs & CHs

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating
 - X-ray flux in ARs
 - Need Further studies in QSs & CHs
- Wind Acceleration

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating
 - X-ray flux in ARs
 - Need Further studies in QSs & CHs
- Wind Acceleration
 - "Bright" outflows observed (ARs & XBPs)

Propagation Reflection Driving

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating
 - X-ray flux in ARs
 - Need Further studies in QSs & CHs
- Wind Acceleration
 - "Bright" outflows observed (ARs & XBPs)
 - How about wind from CHs?

- Driving Poynting Flux: well-done
- Propagation/Reflection: need quantitative studies
 B²_⊥v_{||}/2 - B_{||}v_⊥B_⊥: Non-observable; but B ⇔ v_A
- Heating
 - X-ray flux in ARs
 - Need Further studies in QSs & CHs
- Wind Acceleration
 - "Bright" outflows observed (ARs & XBPs)
 - How about wind from CHs?

based on Matsumoto & Suzuki 2012

Forward-type Numerical Simulations

Summary –Integration

Summary –Integration

Want to know Integrated Energy Input.

Summary –Integration Want to know Integrated Energy Input.

Summary –Integration

Want to know Integrated Energy Input.

Summary –Integration

Want to know Integrated Energy Input.

Photosphere – Corona Coupling ?

- Coordinate observation in comparison with numerical simulation
- Reconnection-triggered
 - Ca II jet
 - Propagating Alfvénic waves
 - X-ray jet
- Need quantitative arguments.
- HINODE IRIS coordinate observation.

An example observation of an AR

Nishizuka+ 2008

Hinode/SOT Call		TRACE195A		Hinode/XRT Alpoly	
(a)	13:09:17UT 7000 km	(†)	13:09:20 UT	(k)	13:09:00 UT
(b)	13:17:08UT	(g)	13:16:39UT	(1)	13:16:22UT
(c)	13:19:08UT	(b)	13:19:06UT	(m)	13:18:30UT
(d)	13:20:20UT	(1)	13;20:19 UT	(n)	13:20:48UT
(e)	13:33:40UT	(U) •	13-33-41UT	(0)	13:33:25UT

z ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs

- *z* ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs
- $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$

- *z* ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs
- $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$ • $\Phi = \int BdS$: OK

- *z* ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs
- $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$
 - $\Phi = \int BdS$: OK
 - v_A changes ⇒ reflection

- *z* ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs
- $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$
 - $\Phi = \int BdS$: OK
 - v_A changes ⇒ reflection

- *z* ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs
- $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$
 - $\Phi = \int BdS$: OK
 - v_A changes ⇒ reflection

- *z* ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs
- $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$
 - $\Phi = \int BdS$: OK
 - v_A changes \Rightarrow reflection

Summary –Integration

Summary –Integration

Want to know Integrated Energy Input.

Summary –Integration Want to know Integrated Energy Input.

Summary –Integration Want to know Integrated Energy Input. t Vertical Time Coupling Filling (x,y) Factor

Summary –Integration Want to know Integrated Energy Input. Vertical Time Coupling llina Factor x,y z ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs

• $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$

Summary –Integration Want to know Integrated Energy Input. Vertical Time Coupling llina Factor x,y) z ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs • $(x, y) \Leftrightarrow$ filling factor (f)

higher resolution $\Rightarrow B \uparrow \& f \Downarrow$

$$\Phi = \int BdS: OK$$

Summary –Integration Want to know Integrated Energy Input. Vertical Time Coupling llina Factor x,y) z ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs • $(x, y) \Leftrightarrow$ filling factor (f)

higher resolution $\Rightarrow B \Uparrow \& f \Downarrow$

•
$$\Phi = \int BdS$$
: OK

• $v_{\rm A}$ changes \Rightarrow reflection

Summary –Integration Want to know Integrated Energy Input. Vertical Time Coupling t llina Factor x,y) z ⇔Phtsph-Chmsph-TR-Crn-Wnd coupling particularly in QSs & CHs • $(x, y) \Leftrightarrow$ filling factor (f)higher resolution $\Rightarrow B \uparrow \& f \Downarrow$

- $\Phi = \int BdS$: OK
- v_A changes ⇒ reflection

Summary –Integration

Want to know Integrated Energy Input.

• $\Phi = \int BdS$: OK

• v_A changes \Rightarrow reflection

Summary

- Vertical Direction
 Photosphere Chromosphere Corona & Wind: Our understandings are decoupled at the moment
 - ⇒ Coordinate Observations
- Horizontal Direction
 Filling Factor of energy flux / tubes / magnetic elements
 - \Rightarrow Smaller scale
- Time Direction
 Heating in time integration ??
 ⇒ Need compiling works with present
 observational data

$$F = \rho v_{\parallel} \left(v^2/2 + h - GM/r \right)$$
$$+ v_{\parallel} B_{\perp}^2 / 8\pi - B_{\parallel} v_{\perp} B_{\perp} / 4\pi$$
$$h: \text{ enthalpy}$$

 $F = \rho v_{\parallel} \left(\frac{v^2/2 + h - GM/r}{e^2/2 + h - GM/r} \right)$ $+ v_{\parallel} B_{\perp}^2 / 8\pi - B_{\parallel} v_{\perp} B_{\perp} / 4\pi$ h: enthalpy • $\rho v_{||}v^2/2$

$F = \rho v_{\parallel} \left(v^2 / 2 + \frac{h}{h} - \frac{GM}{r} \right)$	
$+v_{ }B_{\perp}^{2}/8\pi - B_{ }v_{\perp}B_{\perp}/4\pi$	
h: enthalpy	
1 $\rho v_{\parallel} v^2/2$	X
$2 \rho v_{\parallel} v^2/2$	
⇒	
$v_{\parallel}B_{\perp}^2/8\pi - B_{\parallel}v_{\perp}B_{\perp}/4\pi$	
	- HA
$\Rightarrow \rho v_{ } h$	

$F = \rho v_{\parallel} \left(\frac{v^2}{2} + \frac{h}{h} - \frac{GM}{r} \right)$	
$+v_{ }B_{\perp}^{2}/8\pi - B_{ }v_{\perp}B_{\perp}/4\pi$	
h : enthalpy	
1 $\rho v_{\parallel} v^2/2$	×
$ 2 \rho v_{ } v^2/2 $	
⇒	
$v_{\parallel}B_{\perp}^2/8\pi - B_{\parallel}v_{\perp}B_{\perp}/4\pi$	
$v_{\parallel}B_{\perp}^{2}/8\pi - B_{\parallel}v_{\perp}B_{\perp}/4\pi$	1917
$\Rightarrow \rho v_{\parallel} h$	
$v_{\parallel}B_{\perp}^2/8\pi -$	
$B_{\parallel}v_{\perp}^{-}B_{\perp}/4\pi + \rho v_{\parallel}h$	
$\Rightarrow \rho v_{ } v^2/2$	

$F = \rho v_{\parallel} \left(v^2 / 2 + h - GM / r \right)$	
$+v_{ }B_{\perp}^{2}/8\pi - B_{ }v_{\perp}B_{\perp}/4\pi$	
h: enthalpy	
$\bullet \rho v_{ } v^2/2$	X
$2 \rho v_{\parallel} v^2/2$	
\Rightarrow	
$v_{\parallel}B_{\perp}^2/8\pi - B_{\parallel}v_{\perp}B_{\perp}/4\pi$	
	A HA
$\Rightarrow \rho v_{\parallel} h$	
4 $v_{\parallel}B_{\perp}^2/8\pi$ –	
$B_{\parallel}v_{\perp}B_{\perp}/4\pi + \rho v_{\parallel}h$	
$\Rightarrow \rho v_{ } v^2/2$	

Input & Response in TR & Corona

- Direct (spectroscopic/imaging) OBS of transverse waves
- Direct (spectroscopic/imaging) OBS of longitudinal waves
- Indirect OBS –Non-thermal broadening– Propagation & Dissipation of Alfvénic waves
- OBS of outflows
 Ubiquitous in open flux tubes near ARs
- X-ray bright points