XIT

Taro Sakao (ISAS/JAXA)

Jonathan Cirtain (NASA/MSFC)

and Solar-C WG

11 Nobember 2013 Solar-C Science Meeting

Key Hinode Observations Relevant to Solar-C

- Dynamic chromosphere, with activities protruding even into the corona.
 - → Chromosphere may be playing a key role for the heating of the outer atmosphere.
 - * Need of understanding vector magnetic field structure of the chromosphere.
- Possible sub-arcsec nonthermal events ongoing at the footpoints of coronal loops.
 - → Contribution to coronal heating?

(Movie courtesy of Y. Katsukawa)

- Something crucial resides in angular scales within our reach in the chromosphere/ lower corona.
- Power of imaging spectroscopy.

Imaging Observation of the Corona

Causal connectivity between the base of the corona and the chromosphere/transition region with EUV-line images

Normal Incidence (Baseline)

Very-high-resolution with highcadence imagery in EUV wavebands Connectivity with lower atmosphere Context information for EUVST

0.2-0.3" angular resolution (0.1"/pixel) with cadence <10 s for AR/FL 171, 94 and 304 (or 1548 UV) Å bands

Heating and activities of hot loops with broad-band soft X-ray images

Grazing Incidence (Optional)

Highest spatial-resolution soft
X-ray imaging-spectroscopy
Photon-counting capability for
reconnection structure etc.

~< 1" angular resolution (0.4-0.5"/pxl) ~0.5-10 keV energy range

Fine Structures in the Corona

Hi-C Experiment (July 2012)

AIA 0.6" pixel vs Hi-C 0.12" pixel

(Courtesy J. Cirtain)

Fine Structures in the Corona

Hi-C Experiment (July 2012)

AIA 0.6" pixel vs Hi-C 0.12" pixel

(Courtesy J. Cirtain)

Science Cases of XIT-NI in the MPD (Pre-Release Version)

- The fine-scale structure of coronal loops and the role of magnetic field line braiding in atmospheric heating
- 2. Heating mechanisms in the chromosphere and coronal footpoint regions
- 3. Alfvenic waves in the transition region and corona
- 4. The role of chromospheric jets in supplying hot plasma to the corona
- Energy buildup and release in the solar corona: Measurement of free magnetic energy
- 6. Structure of prominences/filaments and their eruptions
- 7. Current sheet dynamics
- 8. Energy transfer in flares

Science Cases of XIT-NI in the MPD (Pre-Release Version)

Coronal heating

- 1. The fine-scale structure of coronal loops and the role of magnetic field line braiding in atmospheric heating
- Heating mechanisms in the chromosphere and coronal footpoint regions
- 3. Alfvenic waves in the transition region and corona
- 4. The role of chromospheric jets in supplying hot plasma to the corona
- 5. Energy buildup and release in the solar corona: Measurement of free magnetic energy
- 6. Structure of prominences/filaments and their eruptions
- 7. Current sheet dynamics
- 8. Energy transfer in flares

Dynamic activities

Fine-Scale Structure / Role of Braiding

Moss Brightening to Infer Heating Timescale in the Corona

Thermal conduction timescale τ ~5 s for E = 10^{24} erg, S = 2×10^{14} cm², T = 10 MK, L = 10^9 cm

Hi-C observation with $\Delta t = 5.5$ s, $\Delta \theta = 0.25''$ started to detect impulsive brightening in the moss.

Alfvenic Waves in the TR and the Corona

Coronal heating by waves

Low frequency waves (P >~100 s) OK to heat QS & CH, but not likely to heat ARs

- Spatial resolution?
- How about higher frequency waves with P down to several second?

AIA 304 Å (McIntosh et al. 2011)

Wave detection capability: XIT vs AIA Simulation with P = 20-30 s, δv = 20 km/s (± 5 km/s)

Low freq. power (~mHz):
Lateral oscillation with XIT
High freq. power (~kHz):
Non-thermal broadening
with EUVST

Role of Chromospheric Spicles into the Corona

Image fine

structures

predicted

by numerical

simulations

Coronal counterpart of chromospheric spicules has only been marginally identified.

171 Å

Neet to resolve:

- Spicule diameter < 0.5"
- Time scale 10-20 s

304 Å

XIT

Mag. info. from SUVIT Velocity info. from EUVST

171 Å

304 Å

Measurement of free magnetic energy for energy buildup & release

Coronal magnetic field extrapolation by SUVIT

- Fine trace of coronal magnetic field (though thermally modulated)
 - as the reference of NLFFF calculation
- Direct use in NLFFF calculation with flux-rope insertion method
- → Free energy buildup for flares

Structure of prominences and their eruptions

- Structure and dynamics at 0.2"
 scale in prominences present (SOT_a)
- Heating/dynamics at scales below AIA resolution

Strucutre: 304 Å, Heating: 171 Å

FOV: ~400"x400" to give entire extent

(Srivastava et al., 2013)

Current sheet dynamics

- Inefficient magnetic diffusion
 - → Slow reconnection
- To make small length scale
 - → <u>Turbulence</u> as a candidate to generate the small scale
- CSs have been seen in 94/131/193 Å
- Turbulence down to small spatial ($\ll 1$ ") and temporal (a few seconds) scales

Mckenzie in post-CME

UVCS detection of turbulence in post-CME current sheet (Bemporad 2008)

Preliminary Features of XIT-NI

Item	XIT-NI	EUVST	
Telescope	32cm¢ primary mirror 3 sector coating (Ritchey-Chretien; ~4 m length) Tip-tilt control of the secondary		Image - Lower TR - Lower corona - Hot corona (with 1 MK)
Wavelength channel Temperature coverage	171 Å, 94 Å, and 304 Å (or UV band) (0.8MK / 1MK & 8MK(FL) / 0.05 MK) [some from 94/171/195/211/304/335Å]		Provide context for EUVST
Spatial resolution	0.2" - 0.3" (0.1" pixel)	0.16" pixel	
Exposure cadence	Exposure time: AR (<3 MK) - 1 s, FL - 0.1 s Cadence: typ. ~10 s (for AR <3 MK) max. 1-2 s AEC capability	Exposure time: AR – 1-5 s (w/ 0.33" spatial sampling)	
Field of view	~400" x 400"		' nominal 0" extended
Data rate	std.: 1.3 Mbps (200" x 200"; 10 s) burst: 3.1 Mbps (100" x 100"; 1 s)		

Line Candidates (Provisional)

Line	Target	Remark
304 Å	 Imaging of lower TR (~0.1 MK); spicules and prominences Fine magnetic structures in the TR Alfvenic waves and their energetics in the TR Chromospheric/TR spicules 	Causal ch-co relationship in imagery with 304-171
171 Å	 Imaging of lower corona (1 MK) Fine magnetic structures (braiding/twist) of warm loops Alfvenic waves and their energetics in the corona Coronal counterpart signatures of chromospheric spicules 	
94 Å	 Imaging of high-temperature corona (>5 MK) Fine magnetic structures (braiding/twist) of hot loops Heating of hot loops 	Heating of AR core and subsequent cooling down to warm loops

Line Cand

94-335

Time Lag Maps, 12-hr Window

94-211

94-193

Time Lag (s) (Viall & Klimchuk 2012)

Three-Channel NI Layout

Primary: Φ32 cm, efl=16 m

Sector: A_{geom}≈ 100, 200, 300 cm²

Channel selection via focal plane filters!

Issue(s)

- Exposure time for 94 Å very long (>1 min.) even for AR. Useful for brightenings, but what else?
- Other line possibilities?

Preliminary Outlook of the X/EUV Telescope

Baseline 3 NI Channels: 94, 171, 304 Å (or 1548 Å) Sector coating

Optional GI Channel: Photon Counting in 0.5-10 keV

Scientific Requirements and Design Goal for XIT-GI

	Requirement	Design goal
Imaging-spectroscopic spatial resolution	~< 2"	1"-2"
Imaging- spectroscopic temporal resolution	~< 30 s	20 s – 10 s
Field of view	Photon-counting ~100" x 100" Photon-integration ~400" x 400"	Photon-counting >~100" x 100" Photon-integration >~400" x 400" (0.4"-0.5"/pixel)
Energy range	~0.5 – 10 keV	~0.5 – 10 keV
Energy resolution of the focal-plane array	Equivalent to CCD	CMOS-APS

Thank You!