Technical Prospect for 280nm Observations with SUVIT

Y. Suematsu (NAOJ)

Glass and Coating Material

Big jump in designing optics from 388-1100 nm to 280-1100 nm band, because transmitting material in UV (< 350 nm) is limited.

Glass: Silica, CaF2, (LiF)

Collimator Unit in Telescope Assembly

388-1100 nm

S-BSM2, S-LHA64, S-BAH27

Athermal, Apochromatic

280-1100 nm

Athermal but not achromatic ($\Delta f \sim 50$ mm)

Mirror Coating

Design of AR Coating

For 350 nm – 10830 nm

Design of Beam Splitter Coating

Reflection

Transmission

Filtergraph

280nm Broadband Imager, FG Design by LMSAL

Interference filter for 280 nm band

IRIS Solc Filter

4

- Filter design strategy
 - Solc filters have multiple orders, or peaks, separated by the Free Spectral Range (FSR). Using a single filter, can place one peak at the Mg II K-line core (λ_0 = 2796 Å) and the next peak at the +1 order (λ_0 + FSR = 2830Å).
 - Design plate thickness to achieve FSR = 34 Å.
 - Design number of plates to achieve FWHM < 4 Å.
 - Design plate angles to control sidelobe amplitudes.
 - Choose orders using an upstream 2-cavity interference filter which has a FWHM given by approximately FSR/2 (~15 Å). Such filters are easily manufactured.

T. Tarbell, LMSAL

Filtergraph

4-slit configuration for a slit and IFU

Evaluation points

Spectral Bands for SP

	Order	Sampling	# of pixels	Wavelength range
He I 1083.0 nm	15	45.2 mÅ	220 pixels	1082.50 – 1083.49 nm (0.99 nm)
Ca II 854.2 nm	19	35.6 mÅ	220 pixels	853.72 – 854.50 nm (0.78 nm)
Fe I 525.0 nm	31	21.9 mÅ	220 pixels	524.65 – 525.13 nm (0.48 nm)
Mg II 280 nm		11.7 mÅ	220 pixels	279.43 – 280.69 nm (0.26 nm)

Three Cameras

- Advantages
- Simultaneous obs of the three spectrum lines.
- No need of the filter wheel.
- The tilt adjust mechanism of the grating can be simpler.
- The PBS consisting of the calcite blocks can be optimized at each wavelength.
- Optical design of the relay optics becomes easy because there is no chromatic aberration at each optical path.

Disadvantages

- Three cameras are necessary (resources).
- Three optical paths are necessary (fabrication and alignment, resources).

Not transmit 280 nm

- Size of the elemental fiber 10µm x 40µm. ٠
- Material: Bolosilicate Glass .
- Polarization maintaining (to be verified)

Pseudo- Pupil Mirror Array (3x7 only)

Wavelength dependence of image quality Strehl ratio = exp[-(2π rms-WFE/ λ)²]

Severe Contamination Control Necessary

request much sever contamination control than Hinode case

We do not understand exactly the cause of degradation of SOT throughtput.

→ Need further experiments for Solar-C!

Summary

To realize 280 nm observations (scientifically useful)

- Many issues to be solved exist in coatings
- 2D Spectroscopy is not possible with Filtergraph (only broadband imager) needs dedicated spectrograph for 280 nm band with high speed slit scan and/or mirror IFU