Fast Imaging Solar Spectrograph (FISS) Observations of the Chromosphere

Jongchul CHAE

Dept of Physics and Astronomy, Seoul National University

November 10, 2013

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

FISS on NST

installed in 2010 May

э

FISS was made by

- Solar Astronomy Group at SNU
 - Jongchul Chae: PI, conceptual design
 - Hyung-Min Park: software & tests
 - Kwangsu Ahn: scanner & on-site support
 - Hee Su Yang: grating control & software
- Solar and Space Weather Group at KASI
 - Young-Deuk Park: Co-I, system management
 - Jakyoung Nah: optical engineering
 - Bi Ho Jang: mechanical & electrical engineering
 - Kyung-Suk Cho: administration & science promotion

イロト 不得 とくほ とくほ とうほ

FISS aims

- to precisely measure physical parameters of dynamic chromospheric features:
 - Velocity v
 - Temperature T
 - Speed of non-thermal motion ξ
 - Electron density n_e
- by recording Hα line and Ca II 8542 line simultaneously with
 - high spectral resolution: $R > 10^5$
 - high spatial resolution: as high as 0.3"
 - high temporal resolution: as high as 10 s
 - high signal-to-noise ratio: better than 10

イロン 不良 とくほう 不良 とうほ

$\mathrm{H}\alpha$ line and Ca II 854.2 nm line

5/36

ъ

イロト イポト イヨト イヨト

FISS as a plasma thermometer

FISS Imaging

イロト イロト イヨト イヨト 三日

FISS Parameters and Data

Parameters

Parameter	Value for H α /Call λ 8542
Telescope	D = 1.6 m, F/26
Slit	32 μ m $ imes$ 10 mm
Collimator/Imager	f =1.5 m, F/26
Grating	$1/\sigma=79~{ m mm^{-1}}$, $\phi=63^{\circ}$
Camera	$512(16\mu\text{m}) imes512(16\mu\text{m})$
Slit width	0.16″
Pixel size	0.019/0.025 Å $ imes$ 0.16 $'' imes$ 0.16 $''$
Spectral resolution	0.046/0.065 Å ($R = 1.4./1.3 imes 10^5$)
Coverage	9.7/13.1 Å $\times 0.16''N \times 40''$
Typical exposure time	0.03 s
Scan cadence	20 s (for $N = 100$)

Data

- $D_A(\lambda, y; x; t)$ for the H α band
- ► $D_B(\lambda, y; x; t)$ for the Ca II 854.2 nm band

with AO not operating with AO-76 with AO-308

First light observation at BBSO: 2010 May 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�()~.

with AO not operating with AO-76 with AO-308

First disk observation at BBSO: 2010 May 21

10/36

ъ

with AO not operating with AO-76 with AO-308

sunspot

2000630_175731

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with AO not operating with AO-76 with AO-308

flare

20100722_181243

with AO not operating with AO-76 with AO-308

quiet region

20100723_182938

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

with AO not operating with AO-76 with AO-308

active region

・ロト・西ト・ヨト・ヨー シック

with AO not operating with AO-76 with AO-308

quiet region

20110610_2044

э

・ロト ・ 同ト ・ ヨト ・ ヨト

with AO not operating with AO-76 with AO-308

quiet region

with AO not operating with AO-76 with AO-308

active region

20120710_1710

ъ

イロン イロン イヨン イヨン

with AO not operating with AO-76 with AO-308

near-limb active region

20120903_1724

with AO not operating with AO-76 with AO-308

limb chromosphere

20120903_205327

with AO not operating with AO-76 with AO-308

flare

20120719_1837

with AO not operating with AO-76 with AO-308

filament

20120711_1816

with AO not operating with AO-76 with AO-308

active region

20130422_201804

with AO not operating with AO-76 with AO-308

active region

20130716_204956

◆□ → ◆□ → ◆三 → ∢□ → ◆□ →

23/36

with AO not operating with AO-76 with AO-308

active region

20130717-182028

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

24/36

with AO not operating with AO-76 with AO-308

active region

20130718_173033 spatial resolution: 0.4"

(ロ) (四) (ヨ) (ヨ) (ヨ)

with AO not operating with AO-76 with AO-308

26/36

ъ

with AO not operating with AO-76 with AO-308

active region

20130729_191651

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

with AO not operating with AO-76 with AO-308

active region

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

with AO not operating with AO-76 with AO-308

(ロ) (四) (主) (主) (主) のへで

29/36

prominences/filaments quiet regions active regions

prominence temperature

$$I_{\lambda,\text{obs}} = S \cdot [1 - \exp(-\tau_{\lambda})]$$

$$\tau_{\lambda} = \tau_0 \exp\left[-\left(\frac{\lambda - \lambda_1}{\Delta \lambda_D}\right)^2\right]$$

 $T = 11000 \text{ K}, \xi = 7.8 \text{ km s}^{-1}$

Observations Some results Conclusion

prominences/filaments

filament

31/36

1

0

Wavelength [Å]

y* = 0.19

y² = 3.23

x^e = 0.20

y* - 2.61

8 - 0.08

Te = 4.78

4

S = 0.10

Ta = 1.37

S = 0.00

8 = 0.11

7. = 0.21

 $V_{use} = -0.14$ $\Delta \lambda_{a} = 0.21$

-1

4

7. = 0.73

 $V_{100} = 0.43$ $\Delta \lambda_0 = 0.14$

1

1

V₁₀₀ = -0.14 کی = 0.28

-1 0 1

Wavelength [Å]

 $V_{100} = 0.94$ $\Delta v_0 = 0.33$

prominences/filaments quiet regions active regions

bisectors of H α and Ca II 854.2 nm lines

prominences/filaments quiet regions active regions

3-min oscillation as a shock wave

prominences/filaments quiet regions active regions

3-to-5 minute transition of sunspot oscillation

prominences/filaments quiet regions active regions

EB-surge connection

Conclusion

- 1. The description of FISS and some initial results were published in the mini-special-issue of *Solar Physics* in Volume 288, Issue 1, November 2013.
- 2. The performance of FISS on NST is now close to the goal: high spectral, high spatial, and high temporal observations of the chromosphere.
- 3. The FISS observations will contribute to our understanding of non-hydrostatic support and heating of chromospheric features on the Sun: waves, shocks, reconnection....

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ