SUVIT彩層磁場測定精度とサイエンス

スペース太陽物理学の将来展望 2014月21日 JAXA宇宙科学研究所 阿南徹¹、永田伸一¹、勝川行雄²、石川遼子²、 久保雅仁²、一本潔¹、花岡庸一郎²

1: 京都大学 2:国立天文台

目的

- 「既存のインバージョン手法で、Solar-C/SUVITは、 どのくらいの精度で、彩層の磁場を測定できるの か」を提示する
- 代表的なサイエンスターゲットについてどのような 磁場測定が可能か紹介する
- SUVITを使ったサイエンスの検討に利用してもらう

彩層磁場の測定

SUVITが観測するスペクトル線を用いた 彩層磁場測定手法

手法	スペクトル線	大気モデル	
HAZEL (Asensio Ramos et al. 2008)	He I 10830Å	スラブ	٦
López Ariste & Casini 2002	任意	スラブ	ſ
NICOLE (Socas-Navarro et al. 2014) * ハンレ効果は無し	Ca II 8542Å	3次元大気	

彩層

光球

スラブ大気モデル

- 視線方向に物理量の変化無し
- 太陽面からの高さと
 光学的厚さがパラメータ

SUVITが観測するスペクトル線を用いた 彩層磁場測定手法

手法	スペクトル線	大気モデル	
HAZEL (Asensio Ramos et al. 2008)	He I 10830Å	スラブ	
López Ariste & Casini 2002	任意	スラブ	
NICOLE (Socas-Navarro et al. 2014) * ハンレ効果は無し	Ca II 8542Å	3次元大気	

彩層

光球

スラブ大気モデル

- 視線方向に物理量の変化無し
- 太陽面からの高さと
 光学的厚さがパラメータ

スラブ大気モデル

- ・理想は物理量分布のある3次元大気モデルだが、、
- He I 10830Å
 - -「彩層上層にあるスラブ」モデルでOK
 - <= コロナからのUV放射による励起が必要 中性でいられる温度
- Ca II 8542Å
 - リムの現象ならスラブモデルOK
 - ・プロミネンス、リムスピキュールなど視線方向の重なりが無く
 光学的に薄い現象
 - それ以外は理想的な大気モデル

López Ariste & Casini 2002

Call 8542Å リム スラブ大気 偏光測定精度 N/S = 10⁻⁴

横軸:答え 縦軸:インバージョン結果

López Ariste & Casini 2002

左上下、右上の横軸:答え

López Ariste & Casini 2002

López Ariste & Casini 2002

サイエンスと彩層磁場測定 活動領域 ベクトル磁場マップ時間変化

空間分解能:0.1秒角 スキャン時間~60分 He I 10830Å 太陽面中心 => 偏光測定精度: 3 × 10-3

López Ariste & Casini 2002 磁場強度~500G

垂直磁場の誤差~50G 水平磁場の誤差~100G 磁場方位角の誤差~25° (*180°、90°不定性あり)

* インバージョン手法にも依存する

サイエンスと彩層磁場測定 静穏領域 ベクトル磁場マップ時間変化

空間分解能:0.1秒角 スキャン時間~60分 Hel10830Å 太陽面中心 => 偏光測定精度:1×10⁻⁴

López Ariste & Casini 2002 磁場強度~50G

垂直磁場の誤差~7G 水平磁場の誤差~30G 磁場方位角の誤差~25° (*180°、90°不定性あり) *インバージョン手法にも依存する

このようなムービーはとれません

- 要求空間分解能:0.1秒角 <=スピキュールの幅(数100km)
- 要求時間分解能:10秒 <=スピキュールの寿命(50秒 10分)
 => 偏光測定精度:10⁴(He | 10830Å、太陽面)、3×10³(Ca || 8542Å、リム)

空間分解能:0.1秒角 時間分解能:10秒

太陽面で観測し、水平磁場強度 の変化(±10G)として計測 Hel10830Å、太陽面中心 => 偏光測定精度:1×10⁻⁴ → 水平磁場の誤差~20G

リムを観測し、磁場の方位角の 変化(±6°)、水平磁場強度の
変化(±10G)として計測
Ca II 8542Å、リム
⇒ 偏光測定精度:3×10⁻³
⇒ 磁場方位角の誤差~25°
⇒ 水平磁場の誤差~10G

磁束管に沿った、磁場、速度の ベクトルの計測 V_A 10-100 km/s 100G<mark>B</mark> $\delta B = \left(\delta v / V_{A} \right) B$ ≈1-10 [G]δΒ δν 10km/s 継続時間200-300sを分解して計測

HINODE/SOT 広帯域フィルター Call H

- エラーマンボムはHαの端で観 測できる
- 彩層ジェットのリコネクションは Call H の端で観測される (Morita et al. 2008)

スペクトル線形成層の比較

 彩層底部、温度最低層の磁場を精度よく測る必要 があるのではないか?

彩層リコネクションの磁場構造を測定 するためには、NalD線フィルター観測 の仕様の検討とその磁場測定能力が重要

まとめ

- HAZELとLópez Ariste & Casini 2002のインバージョン手法で、
 SOLAR-C/SUVITは、どのくらいの精度で、
 のか、示した
 注)スラブ大気モデル
- SUVITを使ったサイエンスの検討に利用してもらいたい!
 - 彩層磁場測定を使った面白いサイエンスの検討
 - 空間・時間分解能、視野を教えてくだされば、磁場測定誤差を お知らせします。
- NICOLE (Socas-Navarro et al. 2014)など3次元の複雑な大気構造
 に対応できるインバージョン手法も開発されつつある(未検討)
- 課題
 - 散乱偏光を決める輻射場の非等方性
 - 彩層大気の活動によるスペクトル線形成層の変動
 - 3次元大気

ご清聴ありがとうございました