理論面からの検討: エネルギー蓄積からフレアトリガまで

鳥海 森 (国立天文台)

フレア検討チーム

清水敏文、渡辺恭子、浅井歩、伴場由美、草野完也、塩田大幸

シンポジウム「スペース太陽物理学の将来展望」 (2014 Oct. 21)

- オ フレア・CME理論モデル
 - オ 数多く存在
 - Tether-cutting model: Moore et al. (2001)
 - Filament formation: van Ballegooijen & Martens (1989)
 - Filament eruption: Chen & Shibata (2000)
 - Flux cancellation model: Linker et al. (2003)
 - Reversed shear model: Kusano et al. (2004)
 - Kink instability: Török & Kliem (2005)
 - Torus instability: Fan & Gibson (2007)
 - etc.
 - ▶ 関連する観測も多数

Flux cancellation model: Linker et al. (2003)

- オ フレア・CME理論モデル
 - ▶ 共通理解:基礎過程として

- オ フレア・CME理論モデル
 - ▶ 共通理解:基礎過程として

- **オ** フレア・CME理論モデル
 - ▶ 共通理解:基礎過程として

- オ フレア・CME理論モデル
 - ▶ 共通理解:基礎過程として

- 問題は「いつ・何が系を 不安定化させるのか?」
- 不安定化させる要因(= フレアトリガ)に関する 研究は不十分
- 研究はあまり多くないらしい: see, e.g, Forbes
 (2000) and Schrijver (2009)

- ▶ フレアトリガ研究
 - オ コロナアーケード中に局所磁 場構造が出現→フレア発生
 - オ 低層大気における磁気リコネ クションによってフラックス ロープが形成

Kusano et al. (2012)

- オ フレアトリガ研究
 - オ コロナアーケード中に局所磁 場構造が出現→フレア発生
 - オ 低層大気における磁気リコネ クションによってフラックス ロープが形成
 - ▶ トリガ磁場の方位角に依存

▶ フレアトリガ研究

c.f. Bamba et al. (2013)

ㅋ まとめ

2.1. 取得データとその解釈

- オ RMHD計算・インバージョン
 - オ RMHD計算は「必須」
 - オ Bifrostコードの導入 or 国産モデル開発

- オ 彩層スペクトルの複雑さ:IRISデータから
 - オ 静穏領域はBifrostモデルと比較できそう

オ 活動領域・リコネクション・フレアは再現困難か

- Bifrostでどの程度 再現可能か?
- Bifrostを用いて、 そもそもSolar-Cで 彩層磁場等が観測 可能か事前に調べ る必要あり

・ "異常"なEBスペクトル
 → シングルピークなら V_D = -100 km s⁻¹

2.1. 取得データとその解釈

- オ RMHD計算・インバージョン
 - オ Bifrost計算の例:ダイナミックな現象の計算は少ない(難しい)

2.2. フレア研究における観測との連携

オ 観測・運用との連携

- オ Solar-Cの制約:テレメトリとの勝負
 - 1. Solar-Cの現行計画値
 - FoV : 180" × 180" = 130 Mm × 130 Mm
 - Resolution : 0.1" = 70 km
 - 2. なるべく活動領域全体の発展を追いたい
 - 3. トリガ観測としては分解能 0.1" は悪くない?
 - 4. ケーデンスも考慮する必要あり

→ 詳細な議論は伴場さん講演を参照

- ▶ 「1日前予報」の精度は現在とさほど変わらないのでは?
 - → 「数時間前予報」なら精度は向上するかも
- ▶ トリガ的磁場はPIL周辺に多数存在
 - → トリガの事前特定を可能にしておく必要性あり(次ページ)

2.2. フレア研究における観測との連携

オ 課題:詳細なトリガ研究

- ▶ 複数の「容疑者」?
 - 実際の活動領域には多数のフレアトリガ的な磁場構造が存在
 - 利 観測視野が狭いため、事前にある程度 「容疑者の絞り込み」が必要
- ▶ トリガリコネクションの発生高度?

- **オ** シミュレーションの改良
 - **オ** 複数トリガの導入
 - フルMHD下でのシミュレーション
 - オ "リアリスティック"モデル
- ▶ ひので観測の向上も必須

2.3. 成功基準とフレア予測の実践

- オ Solar-Cでのフレア研究に向けて
 - ▶ 成功基準:何を目標とするか?
 - オ フレア領域の光球・彩層磁場測定
 - エネルギー蓄積~トリガ機構の物理解明
 - オ フレア発生時刻・場所の <u>事後</u> 特定
 - フレア発生時刻・場所の <u>直前~同時</u> 特定 (=準リアルタイム予報)
 - フレア発生時刻・場所の<u>事前</u>特定 (=フレア予報)
 - 地球近傍への影響の<u>事前</u>予測
 (=宇宙天気予報)

- (ミニマムサクセス)
 フルサクセス
 フルサクセス
 エクストラサクセス
 ・フレア数時間前の地上観測への フィードバックを想定
 エクストラサクセス
 ・1-2日前予報によるSolar-C運用 へのフィードバックを想定
 - Solar-Cでは厳しいか
 CME地球到達以前の「正確な」
 - 影響評価を想定

2.3. 成功基準とフレア予測の実践

- オ Solar-Cでのフレア予測
 - オ やるべきか?
 - 月指すべきではある
 - 「フレア(直前・事前)予測」をエクストラサクセスとする場合、計画段階 からそこに全軍投入して良いのか
 - 観測→予測→運用フィードバック は相応のコストがかかる
 - オ 理論・観測研究の進展やSolar-C打ち上げ後の運用状況を見てから
 - ▶ フレア補足率は向上するか?
 - オ 現在の理論研究・観測研究や運用体制の改善でまだまだ出来るはず(希望)
 - オ 「今できる研究」を進めるべき
 - ▶ フレア予測の実現可能性?
 - ▶ 正直、分からない
 - フレア過程を完全に理解すれば予測・予報は実現するはず

3. まとめ

- オ 現在までの理解:フレア理論
 - オ エネルギー蓄積:コロナアーケード・フラックスロープ形成
 オ 数日、数万km スケールの現象
 - ▶ トリガ過程:トリガ磁場発生
 - 数1000 km、数時間程度の構造
 - オ 1000 km以下、数10分スケールの微小磁場が関与している可能性あり
- 🛪 Solar-Cのフレア研究
 - ▶ ミニマムサクセス:フレア磁場の測定(彩層含む)
 - オ フルサクセス:物理機構の解明
 - ▶ エクストラサクセス:事前予報(数時間前)
 - →「予報」は物理を解明してから。物理を完全に解明すれば出来る

3. まとめ

↗ 課題

- RMHDコードとインバージョン
 - RMHDはBifrost輸入が現実的か
- ▶ フレアトリガの事前特定
 - オ 草野シミュレーションの改良
 - ひのでによるフレア補足率の向上
- オ Solar-Cによるフレア観測の可能性
 - オ Bifrostなどを活用し、
 - 浮上磁場
 - ・ リコネクション
 - フレア

の彩層磁場等、観測可能性を検証

Thank you for your attention!

Appendix

- オ データ駆動型シミュレーション
 - ▶ シミュレーションの境界条件
 - 現状:光球の3次元磁場データを 利用して上空の磁場を推定
 - Cheung et al. (in prep): ジェットを 生じた周囲の磁場環境を再現、 IRIS観測と比較
 - ▶ 彩層観測のメリット
 - オ 光球磁場・彩層磁場観測から磁場 勾配を計算 → 電流場を推定可能
 - > 密度・エネルギーフラックスなど も観測できればシミュレーション の精度を向上できる

(b) B_z at z = 4 Mm

Cheung et al. (2014, in prep)