Hinode-3: 3rd Hinode Science Meeting Hitotsubashi Memorial Hall, Tokyo 1–4 December, 2009

Quiescent prominence dynamics: an update on Hinode/SOT discoveries

Thomas E. Berger

Lockheed Martin Solar and Astrophysics Laboratory (LMSAL)

Neal Hurlburt LMSAL

Ted Tarbell

LMSAL

Takenori J. Okamoto
 NAOJ

Abstract. We present new detailed measurements of the turbulent upflow plumes and large-scale "bubble" flows discovered in visible-light quiescent prominences by Hinode/SOT. Local correlation tracking is combined with manual tracking to measure flow characteristics, morphology, lifetimes, and contrast. A unified picture emerges in which the small-scale 1–6 Mm plumes are formed from a Rayleigh-Taylor (RT) instability on the boundary between dense prominence plasma and buoyant magnetic flux emerging from below. The buoyant flux systems either break down to form small-scale plumes or in some cases continue to grow to become the large-scale "bubbles" that are occasionally seen to disrupt large sections of prominences. We compare the observations to the results of a compressible 2.5D MHD simulation showing that double-diffusive convection may generate the plumes from proto-plumes formed at the primary wavelength (< 1 Mm) of the RT unstable density discontinuity.