High Resolution Observations From the Ground What the SST can do to enhance SOLAR-B science

Göran Scharmer

17th SOT meeting, Tokyo 18 April 2006

The Swedish 1-m Solar Telescope and its instrumentation

The Swedish 1-m Solar Telescope – SST

First light in May 2002

- 1 m aperture
- Integrated adaptive optics
- Small number of optical surfaces
- Very high optical quality
- Most highly resolving solar telescope ever built
- \Rightarrow Solar images at \sim 0'.'1 resolution

The SST – Schematic drawing

- Transmitting telescope optics made of fused silica for stable polarization properties.
- Field mirror can be tilted for compensation of atmospheric dispersion.
- A. Field mirror and field lens
- B. Schupmann corrector
- C. Tip-tilt mirror, adaptive mirror, re-imaging lens

Instrumentation and techniques

- Adaptive Optics
- Phase-diversity and MOMFBD imaging and restauration
- Spectrograph (3 exit ports)
- Spectro-polarimeter (first light April 2006)
- Dual Fabry–Pérot filter system & Imaging polarimeter (end of 2006)

Dual Fabry-Perot filter: High-resolution & high-reflectivity etalon combined with low-resolution & low-reflectivity etalon (Scharmer 2006).

- FOV 70"x70", 0".07/pixel
- Wavelength range 520-860 nm, FWHM 60 mA at 630 nm
- High transmission (FPI > 80%, pre-filters 70-80%)
- Polarizing beam splitter with two 1kx1k CCD's
- Third CCD recording through pre-filter to allow image restauration
- Liquid crystals and filter tuned while reading out CCD's (10 ms)
- Back illuminated, low-noise CCD's operating at 30 Hz frame rate

SST **strongly** polarizing, polarization measurements useless without good polarization model.

- Fused silica in all transmitting telescope optics ⇒ stable polarization properties
- The same polarization model used for polarimetry based on narrow-band filters and on the spectrograph
- Uses 5-component general Müller matrix for 1-meter lens
- Model **based** on data with 1-meter rotating linear polarizer
- Model verified with unpolarized input light

Polarization model verification, $I \Rightarrow Q$ cross-talk

Polarization model verification, $I \Rightarrow U$ cross-talk

Göran Scharmer (ISP)

High Resolution Observations From the Grour

Polarization model verification, $I \Rightarrow V$ cross-talk

Sunspot fine structure close to the resolution limit (Scharmer et al. 2002)

High Resolution Observations From the Grour

Magnetic substructure close to the resolution limit (Berger et al. 2005)

a: Widebandb: Magnetogramc: Dopplerd: G-band

Göran Scharmer (ISP)

High Resolution Observations From the Grour

3D structures in sunspots and pores (Lites et al. 2004)

25 July 2002

3D light bridge structure (Lites et al. 2004)

A B > 4
 B > 4
 B

Dark-cored penumbra filaments (Spruit & Scharmer 2006)

High Resolution Observations From the Grour

Connection light bridges - dark cored filaments (Löfdahl et al. in prep.)

Magnetogram (suggests spine structure rather than embedded flux tubes)

First Stokes images from SST (individually scaled)

Note: Any two-component representation would need **gradients** in **both** components!

SST observing time 2005-2006

For up to $\approx 1-2$ hours on $\approx 10\%$ of the days, SST can provide data **strongly enhanced** by image restauration and short exposures:

- Highly resolved (\approx 0".1) images and movies in Ca H wing and at blue wavelengths
- Highly resolved (≈ 0".2) multi-wavelength Stokes images using dual FPI system (operational early 2007). Low residual seeing induced cross-talk.

Spectropolarimetric data will be available but **unlikely** to be comparable with SOLAR-B data as regards spatial resolution due to long integration times needed.

- SST used by several partners (Oslo and Utrecht Universities, IAC, Max-Planck Institut für Sonnensystemforschung, LMSAL) and programs (Opticon, IAC ITP). Collaborations require contacts with individual institutes
- IAC International Time Program (ITP) program provides direct means of obtaining SST observing time
- Swedish financial support for operating SST is declining

Data at 0".1 spatial resolution suggest that:

- τ = 1 surface strongly warped by magnetic field, needs sophistication of diagnostics and inversion techniques
- No evidence for embedded flux tubes in outer penumbra. Connection dark-cored penumbral filaments and light bridge dark lanes suggest field-free gaps in penumbra (Spruit & Scharmer 2006).
- Inversion techniques unlikely to resolve multiple components with complex magnetic field topologies. Supplementary measurements at high spatial resolution desirable in order to help resolving ambiguities in interpretation.