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Magnetic Field Diagnostics of Emerging Flux
Extremely large volume of papers studying 
photospheric magnetic observations of flux 
emergence.  
Ground-based instruments: Leka et al. (1996); 
Strous et al. (1996); Lites, Skumanich & Martinez 
Pillet (1998); Strous & Zwaan (1999); De Pontieu 
(2002); Kubo, Shimizu & Lites (2003); Watanabe 
et al. (2008, 2011); Guglielmino et al (2010); 
Yurchyshyn et al. (2010), Rutten et al. (2013) 
Bal loons: F lare Genes is Exper iment  
Bernasconi et al. (2002); Pariat et al (2004) 
SUNRISE Guglielmino et al. (2012)  
MDI Many many papers  
Hinode Centeno et al. (2007); Cheung et al. 
(2008); Okamoto et al. (2008); Magara (2008); 
Gonzalez & Bello Rubio (2009); Otsuji et al. 
(2009, 2011); Ishikawa, Tsuneta & Jurčák (2010), 
Shimizu, Ichimoto & Suematsu (2012) 
SDO/HMI Centeno et al (2012): Liu & Schuck 
(2012); Toriumi, Hayashi & Yokoyama (2012, 
2014); Tarr & Longcope (2012); Cheung & 
DeRosa (2012), Cheung et al. (2015) 

the active region. Schmieder et al. (2004) have shown that
the highest loops and the northern loops of the region were
best fitted with a lower parameter: ! ¼ 9:4 ; 10"3 Mm"1. This
shows that the hypothesis that the whole region has the same
twist is not perfectly true, which is not surprising, since ! is
strictly constant only along a field line. Schmieder et al. (1996)
had already pointed out the existence of a gradient in the
magnetic shear above an active region. But since the lines
computed with ! ffit well the central low loops, where our study
takes place, we keep this value of the twist for the following.

We wish to point out that the linear force-free field (LFFF)
approximation may not a priori give a good representation of
the magnetic field at low altitudes: in the photosphere and
chromosphere, pressure and gravity can substantially modify a

force-free field, since " #1. Linear magnetohydrostatic models
could have been computed, but we did not use them for two
reasons: first, Aulanier et al. (1998) have shown that these
models did not significantly affect the BP topologies; second,
we wanted to highlight purely magnetic effects. In this context,
nonlinear force-free field models should be used. But we chose
to restrict ourselves to the linear approximation because of the
strong efficiency of the Fourier transform method in dealing
with the very small-scale features that we are interested in, as
opposed to numerical finite-difference methods that are re-
quired to compute nonlinear models, which typically require
many more grid points than we used and have never been
tested at this high spatial resolution and with BP topologies
(see, e.g., Régnier et al. 2002 for an application to large-scale
coronal structures).

Fig. 2.—(a) Extrapolated field lines on a TRACE image (inverse color table) taken at 171 8 on 2000 January 25 at 18 :02 UT. The thick lines fit the TRACE loops
best. (b) Projection view of the extrapolated field lines. On the base plane, the thin solid (dashed) lines represent isocontours of the vertical component of the
magnetic field of 50, 300, 900, and 1800 G positive (negative) values.

Fig. 1.—(a) Observed horizontal field. The background image is the Bz magnetogram, as deduced from the FGE magnetogram. (b) Extrapolated horizontal field
on the vertical field magnetogram used as an input in the extrapolation. One notes the inclusion of the FGE magnetogram in the IVM magnetogram. In both panels
the arrows give the orientation of the horizontal field, and their length is proportional to the logarithm of the field amplitude. These arrows are only plotted in regions
where the total field is stronger than 200 G.
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Ishikawa, Tsuneta & 
Jurčák (2010)Continuum

Linear Pol.

Circular Pol.

•130s cadence raster scans 
using Hinode/SP 

•S t o k e s I n v e r s i o n 
( S I R G A U S ) w i t h a n 
gaussian profile flux tube 
embedded in the model 
atmosphere.  

•Sequence of inversions 
shows a small loop rising 
through the first one or two 
pressure scale heights of 
the atmosphere. 

•O n l y p o s s i b l e w i t h 
extremely stable seeing 
and sensit ivity (space 
mission, A/O).



Supersonic downflows in a flux 
cancellation site (Cheung et al. 
2008) from Hinode/SP. Perhaps a 
signature of reconnection down 
flows.



Flux emergence in the photosphere

• Stokes I: dark Doppler signatures of small-scale magnetic loops. 
• Stokes Q & U: elongated features in the body of the loop. 
• Stokes V: most of the signal is concentrated at the footprints of the loops.

Slide credit: J. De La Cruz Rodriguez  



From Cheung et al. (2008): SOT/NFI observations of dark lanes in emerging flux regions. 
See also Strous & Zwaan (1999).



As reported by Cheung et al. (2007b) the rising of small-scale
flux tubes, given sufficient twist, is also able to create distur-
bances in the granulation pattern. For instance, a tube with a flux
of 1019Mx and a twist parameter of k ¼ 0:5 remains sufficiently
coherent during its rise through granular convection that its hor-
izontal expansion at the photospheric base modifies the local
granulation pattern and leads to the transient appearance of
dark upflows. A general disturbance of the granulation pattern
in our simulated EFR can also be seen in Figure 9. In the in-
tensity image on the right, we can see that within the EFR, the
granular structures tend to be larger and more elongated than
the ‘‘typical’’ quiet-Sun granule.

In addition to larger granules, transient darkenings are found
in our simulated EFR. Figure 16 shows snapshots of the vertical
component of the magnetic field (Bz, sampled at !500 ¼ 0:1) and
the continuum intensity distribution near a darkening within the
EFR. The darkening is predominantly associated with upflowing
plasma (values of vz up to 1 km s"1), whereas the flanking bright
grains at the ends of the darkening are associated with the foot-
points of the rising flux bundle. In our EFR simulation, however,
there also exist transient darkenings (of comparable spatial extent
and lifetime) that are predominantly associated with downflows
having speeds of about 0.5Y1 km s"1. In addition, even those

darkenings that are initially associated with upflows eventually
(within 5Y10 minutes) become associated with downflows. This
transition reflects that fact that although low-entropy material
can overshoot into the photosphere, it eventually overturns and
forms new downflow lanes in the granulation pattern (mass con-
servation entails thatmost upflowing plasmamust overturnwithin
a few pressure scale heights).

3.2.6. Transient Kilogauss Horizontal Fields

Measurements of horizontal photospheric fields outside of sun-
spot penumbrae have thus far resulted in sub-kG field strengths.
For instance, ground-based observations of the quiet Sun with the
Advanced Stokes Polarimeter (ASP) revealed internetwork hori-
zontal fields with field strengths up to 600 G (Lites et al. 1996).
Similarly, ASP observations of EFRs by Lites et al. (1998) and
Kubo et al. (2003) led the authors to conclude that flux emerges
initially as horizontal structures with sub-kG field strengths, and
that only after the emerged fields become vertical do super-kG
fields exist.
Recent observations of ubiquitous horizontal fields pervading

the photospheric surface (Harvey et al. 2007; Orozco Suárez
et al. 2007; Lites et al. 2008) have revealed average horizontal
fields on the order of tens of gauss. The lack of a dependence of

Fig. 16.—Example of a transient darkening in the simulated emerging flux region (run A; k ¼ 0:1). The top and bottom panels, respectively, show the vertical field
component (sampled at !500 ¼ 0:1) and the emergent continuum intensity at 500 nm. The transient darkening corresponds to the crest of a granular-scale!-loop emerging
at the photosphere (yellow contours indicate magnetic upflows with I / Ih i < 0:7, Bhorj j > 100 G, and vz ¼ 0:5 km s"1). The footpoints of the loop correspond to the
opposite-polarity flux concentrations at the ends of the darkening (the green and red contours, respectively, enclose positive and negative flux regions with Bzj j # 700 G).
Although these footpoints are located in downflows, they are relatively bright (I /hIi ¼ 1:4Y1.6).
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From Cheung et al. (2008): Radiative MHD simulation of emerging flux reproduces dark 
lanes. Basically, upflow  regions with low entropy. 



Magnetic bubbles in the photosphere
SST/CRISP - 6302, full-Stokes

Ortiz et al. (2014)

SST/CRISP - Ca II 8542

Slide credit: J. De La Cruz Rodriguez  



Magnetic bubbles in the chromosphere
SST/CRISP - 8542

Ortiz et al. (2014); de la Cruz Rodríguez et al. (2015)

From Ortiz et al. (2014): 
• The emergence is not visible at line center in Ca II 8542, during our series. 
• Canopy of fibrils above the emerging flux in the chromosphere. 
• Line positions along the wing show similar dark features as in the Fe I lines. 
• Observed delay in 8542 relative to Fe I 6302. 
• No signal in Stokes Q & U, very weak Stokes V signal.

Slide credit: J. De La Cruz Rodriguez  



De la Cruz Rodriguez et al. (2015): non-LTE Stokes inversion of 
SST Ca II 8542 Å observations of an emerging magnetic bubble.
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Above: Sequence of temperature maps at 1 min cadence
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Above: Sequence of Bz maps at 1 min cadence

Below: Sequence of Doppler velocity maps at 1 min cadence



Leenaarts et al. (2013), IRIS ITN 37

Ca II 854.2 (yellow)



Integral Field
Spectropolarimetry
(e.g. Solar-C, DKIST)

Radiative MHD simulation of AR formation* (M. Rempel)

It would be an amazing achievement to map the 
chromospheric field to see reconnection in action.

*work done for NASA’s Heliophysics Grand Challenges Research project (LMSAL/NCAR/SAO/BAERI/U Oslo)

Bz @ 1.5 Mm Bz @ 3.8 Mm

Log mass density Log internal energy density



IRIS raster scan of an EFR: 
Mg II k and Mg II triplet 

Scanning from the wing 
to the k3 (core), one 
sees the transition from 
reversed granulation to 
arch filaments / fibrils.



IRIS raster scan of an EFR: 
Mg II k and Mg II triplet 

Scanning from the wing 
to the k3 (core), one 
sees the transition from 
reversed granulation to 
arch filaments / fibrils.



IRIS raster scan of an EFR: 
Mg II k and Mg II triplet 

Scanning from the wing 
to the k3 (core), one 
sees the transition from 
reversed granulation to 
arch filaments / fibrils.

Scanning to the Mg II 
t r i p l e t , o n e s e e s 
different structure in the 
c h r o m o s p h e r e 
(seemingly lower lying 
loops).



IRIS Mg II rasters of an EFR @ 330s cadence 
Mg II triplet lines are a diagnostics for low chromospheric heating 

(Pereira et al. 2015) 

Blue wing Near k2v Near k2r Mg II triplet



Wouldn’t	 it	 be	 
fantastic	 to	 put	 
magnetic	 field	 
vectors	 on	 
these	 images?	 	 



Thermal Diagnostics



The Atmospheric Imaging Assembly (AIA, Lemen et al. 2012; 
Boerner et al. 2012) instrument onboard NASA’s Solar 
Dynamics Observatory (SDO, Pesnell et al. 2012) is a suite of 
four normal-incidence reflecting telescopes that image the Sun 
in seven EUV channels, two UV channels and one visible 
wavelength channel.  

The aim of this and many other studies is to extract thermal 
information about the Sun’s optically thin corona using the EUV 
observations. The calibrated (i.e. dark-subtracted, flat-fielded 
and exposure time normalized) count rate yi in the i-th EUV 
channel is related to the thermal distribution of coronal plasma 
by:
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4. EMISSION MEASURE DETERMINATION USING AIA

4.1. Statement of the problem

AIA EUV observations can be related to the physical properties of optically thin coronal plasma as an integral over
temperature space:

yi =
Z 1

0

Ki(T ) DEM(T )dT, (1)

where yi is the exposure time-normalized pixel value in the i-th AIA channel (in units of DN s�1 pixel�1), Ki(T ) is
the temperature response function (in units of DN cm5 s�1 pixel�1) and DEM(T ) =

R1
0

n

2

e(T )dz is the di↵erential
emission measure (in units of cm�5 K�1) of the plasma along a line-of-sight. ne(T ) is the electron number density of
plasma at a certain temperature T . Let the temperature range be divided into n neighboring bins, so that

yi =
nX

j=1

Z Tj+�Tj

Tj

Ki(T )DEM(T )dT, (2)

where the j-th temperature bin has range T 2 [Tj , Tj + �Tj). The aim is to use AIA measurements to retrieve the
emission measure distribution (either in di↵erential or integral form).

Assume that Ki(T ) = Kij is piecewise constant in each j-th temperature bin, so

yi =
nX

j=1

KijEMj ,where (3)

EMj =
Z Tj+�Tj

Tj

DEM(T )dT. (4)

With a priori knowledge about the form of DEM(T ) over the range [Tj , Tj +�Tj), it is in principle possible to drop the
assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
we adopt this assumption since such information is not available.
Eq. (3) can be written in the following form

y = Kx, (5)

where K is an m⇥ n matrix with components Kij , y is an m-tuple corresponding to measurements by the AIA EUV
channels (m = 6 when using the 94, 131, 171, 193, 211 and 335 Å channels) and x is an n-tuple with components
given by EMj .

For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in
emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that

�

2 =
mX

i=1

✓
yi,obs

� yi,model

�i

◆
2

(6)

is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R

n. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy

where Ki(T) is the temperature response function (see next 
slide):

Statement of the Problem



From aia_get_response.pro in SSW
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Fig. 1. Plot of DEM curves for coronal hole, quiet Sun, active region
and flare plasma (see text for references).

and AR spectra. Density values of Ne = 2 × 108 cm−3,
Ne = 5 × 108 cm−3 and Ne = 5 × 109 cm−3 were used in cal-
culating the CH, QS and AR spectra respectively. These are the
same density values as those used to calculate the contribution
functions for the lines which were used to constrain the DEM
curves for the CH, QS and AR cases. For the flare spectrum
a value of Ne = 1 × 1011 cm−3 and the solar coronal abun-
dances of Feldman et al. (1992) were used. The use of either
photospheric or coronal abundances in calculating the synthetic
spectra reflects the original use of either photospheric or coronal
abundances in generating the DEM curves. These synthetic spec-
tra were then convolved with the effective area of each channel.
The effective areas were obtained from P. Boerner (2009, private
communication), with the exception of the 171 Å and 335 Å
channels for which updated versions were used obtained from
Solarsoft (12 July, 2010).

3. Results
Table 1 lists those spectral lines which contribute more than 3%
to the total emission in each channel for CH, QS, AR and flare
plasma. Also included is the fractional contribution of the con-
tinuum emission for any case where the continuum contributes
more than 3% to the total emission in a channel. Synthetic spec-
tra for each of the channels are displayed in Fig. 2 - 8. For every
channel each spectrum has been divided by the peak intensity
of the strongest spectrum. Weaker spectra have been scaled by
factors indicated in each figure.

The 94 Å channel is expected1 to observe the Fe XVIII 93.93Å
line [log T[K] ∼ 6.85] in flaring regions. For both AR and flare
plasma (see Fig. 2) the dominant contribution comes from the
Fe XVIII 93.93 Å line. However, for the CH and QS spectrum (see
Fig. 2) the dominant contribution comes from the Fe X 94.01 Å
line [log T ∼ 6.05].

In flaring regions the 131 Å channel is expected1 to observe
the Fe XX 132.84 Å and Fe XXIII 132.91 Å lines. However, for
the flare spectrum (see Fig. 3) the dominant contribution comes
from the Fe XXI 128.75 Å line [log T ∼ 7.05]. The combined con-
tribution of the Fe XX 132.84 Å and Fe XXIII 132.91 Å lines is less
than ten percent of the total emission. For CH observations the
131 Å channel is expected1 to be dominated by Fe VIII lines [log
T ∼ 5.6]. From our simulations, the dominant contribution for
CH and QS plasma (see Fig. 3) does come from Fe VIII lines, but
with a significant contribution from continuum emission. For the

Table 1. Predicted AIA count rates.

Ion λ T ap Fraction of total emission
Å K CH QS AR FL

94 Å Mg VIII 94.07 5.9 0.03 - - -
Fe XX 93.78 7.0 - - - 0.10
Fe XVIII 93.93 6.85 - - 0.74 0.85
Fe X 94.01 6.05 0.63 0.72 0.05 -
Fe VIII 93.47 5.6 0.04 - - -
Fe VIII 93.62 5.6 0.05 - - -
Cont. 0.11 0.12 0.17 -

131 Å O VI 129.87 5.45 0.04 0.05 - -
Fe XXIII 132.91 7.15 - - - 0.07
Fe XXI 128.75 7.05 - - - 0.83
Fe VIII 130.94 5.6 0.30 0.25 0.09 -
Fe VIII 131.24 5.6 0.39 0.33 0.13 -
Cont. 0.11 0.20 0.54 0.04

171 Å Ni XIV 171.37 6.35 - - 0.04 -
Fe X 174.53 6.05 - 0.03 - -
Fe IX 171.07 5.85 0.95 0.92 0.80 0.54
Cont. - - - 0.23

193 Å O V 192.90 5.35 0.03 - - -
Ca XVII 192.85 6.75 - - - 0.08
Ca XIV 193.87 6.55 - - 0.04 -
Fe XXIV 192.03 7.25 - - - 0.81
Fe XII 195.12 6.2 0.08 0.18 0.17 -
Fe XII 193.51 6.2 0.09 0.19 0.17 -
Fe XII 192.39 6.2 0.04 0.09 0.08 -
Fe XI 188.23 6.15 0.09 0.10 0.04 -
Fe XI 192.83 6.15 0.05 0.06 - -
Fe XI 188.30 6.15 0.04 0.04 - -
Fe X 190.04 6.05 0.06 0.04 - -
Fe IX 189.94 5.85 0.06 - - -
Fe IX 188.50 5.85 0.07 - - -
Cont. - - 0.05 0.04

211 Å Cr IX 210.61 5.95 0.07 - - -
Ca XVI 208.60 6.7 - - - 0.09
Fe XVII 204.67 6.6 - - - 0.07
Fe XIV 211.32 6.3 - 0.13 0.39 0.12
Fe XIII 202.04 6.25 - 0.05 - -
Fe XIII 203.83 6.25 - - 0.07 -
Fe XIII 209.62 6.25 - 0.05 0.05 -
Fe XI 209.78 6.15 0.11 0.12 - -
Fe X 207.45 6.05 0.05 0.03 - -
Ni XI 207.92 6.1 0.03 - - -
Cont. 0.08 0.04 0.07 0.41

304 Å He II 303.786 4.7 0.33 0.32 0.27 0.29
He II 303.781 4.7 0.66 0.65 0.54 0.58
Ca XVIII 302.19 6.85 - - - 0.05
Si XI 303.33 6.2 - - 0.11 -
Cont. - - - -

335 Å Al X 332.79 6.1 0.05 0.11 - -
Mg VIII 335.23 5.9 0.11 0.06 - -
Mg VIII 338.98 5.9 0.11 0.06 - -
Si IX 341.95 6.05 0.03 0.03 - -
Si VIII 319.84 5.95 0.04 - - -
Fe XVI 335.41 6.45 - - 0.86 0.81
Fe XIV 334.18 6.3 - 0.04 0.04 -
Fe X 184.54 6.05 0.13 0.15 - -
Cont. 0.08 0.05 - 0.06

The count rates are normalised for each channel. Coronal hole
(CH), quiet Sun (QS), active region (AR) and flare (FL) plasma.

a Tp corresponds to the log of the temperature of maximum abun-
dance.
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Fig. 1. Plot of DEM curves for coronal hole, quiet Sun, active region
and flare plasma (see text for references).

and AR spectra. Density values of Ne = 2 × 108 cm−3,
Ne = 5 × 108 cm−3 and Ne = 5 × 109 cm−3 were used in cal-
culating the CH, QS and AR spectra respectively. These are the
same density values as those used to calculate the contribution
functions for the lines which were used to constrain the DEM
curves for the CH, QS and AR cases. For the flare spectrum
a value of Ne = 1 × 1011 cm−3 and the solar coronal abun-
dances of Feldman et al. (1992) were used. The use of either
photospheric or coronal abundances in calculating the synthetic
spectra reflects the original use of either photospheric or coronal
abundances in generating the DEM curves. These synthetic spec-
tra were then convolved with the effective area of each channel.
The effective areas were obtained from P. Boerner (2009, private
communication), with the exception of the 171 Å and 335 Å
channels for which updated versions were used obtained from
Solarsoft (12 July, 2010).

3. Results
Table 1 lists those spectral lines which contribute more than 3%
to the total emission in each channel for CH, QS, AR and flare
plasma. Also included is the fractional contribution of the con-
tinuum emission for any case where the continuum contributes
more than 3% to the total emission in a channel. Synthetic spec-
tra for each of the channels are displayed in Fig. 2 - 8. For every
channel each spectrum has been divided by the peak intensity
of the strongest spectrum. Weaker spectra have been scaled by
factors indicated in each figure.

The 94 Å channel is expected1 to observe the Fe XVIII 93.93Å
line [log T[K] ∼ 6.85] in flaring regions. For both AR and flare
plasma (see Fig. 2) the dominant contribution comes from the
Fe XVIII 93.93 Å line. However, for the CH and QS spectrum (see
Fig. 2) the dominant contribution comes from the Fe X 94.01 Å
line [log T ∼ 6.05].

In flaring regions the 131 Å channel is expected1 to observe
the Fe XX 132.84 Å and Fe XXIII 132.91 Å lines. However, for
the flare spectrum (see Fig. 3) the dominant contribution comes
from the Fe XXI 128.75 Å line [log T ∼ 7.05]. The combined con-
tribution of the Fe XX 132.84 Å and Fe XXIII 132.91 Å lines is less
than ten percent of the total emission. For CH observations the
131 Å channel is expected1 to be dominated by Fe VIII lines [log
T ∼ 5.6]. From our simulations, the dominant contribution for
CH and QS plasma (see Fig. 3) does come from Fe VIII lines, but
with a significant contribution from continuum emission. For the

Table 1. Predicted AIA count rates.

Ion λ T ap Fraction of total emission
Å K CH QS AR FL

94 Å Mg VIII 94.07 5.9 0.03 - - -
Fe XX 93.78 7.0 - - - 0.10
Fe XVIII 93.93 6.85 - - 0.74 0.85
Fe X 94.01 6.05 0.63 0.72 0.05 -
Fe VIII 93.47 5.6 0.04 - - -
Fe VIII 93.62 5.6 0.05 - - -
Cont. 0.11 0.12 0.17 -

131 Å O VI 129.87 5.45 0.04 0.05 - -
Fe XXIII 132.91 7.15 - - - 0.07
Fe XXI 128.75 7.05 - - - 0.83
Fe VIII 130.94 5.6 0.30 0.25 0.09 -
Fe VIII 131.24 5.6 0.39 0.33 0.13 -
Cont. 0.11 0.20 0.54 0.04

171 Å Ni XIV 171.37 6.35 - - 0.04 -
Fe X 174.53 6.05 - 0.03 - -
Fe IX 171.07 5.85 0.95 0.92 0.80 0.54
Cont. - - - 0.23

193 Å O V 192.90 5.35 0.03 - - -
Ca XVII 192.85 6.75 - - - 0.08
Ca XIV 193.87 6.55 - - 0.04 -
Fe XXIV 192.03 7.25 - - - 0.81
Fe XII 195.12 6.2 0.08 0.18 0.17 -
Fe XII 193.51 6.2 0.09 0.19 0.17 -
Fe XII 192.39 6.2 0.04 0.09 0.08 -
Fe XI 188.23 6.15 0.09 0.10 0.04 -
Fe XI 192.83 6.15 0.05 0.06 - -
Fe XI 188.30 6.15 0.04 0.04 - -
Fe X 190.04 6.05 0.06 0.04 - -
Fe IX 189.94 5.85 0.06 - - -
Fe IX 188.50 5.85 0.07 - - -
Cont. - - 0.05 0.04

211 Å Cr IX 210.61 5.95 0.07 - - -
Ca XVI 208.60 6.7 - - - 0.09
Fe XVII 204.67 6.6 - - - 0.07
Fe XIV 211.32 6.3 - 0.13 0.39 0.12
Fe XIII 202.04 6.25 - 0.05 - -
Fe XIII 203.83 6.25 - - 0.07 -
Fe XIII 209.62 6.25 - 0.05 0.05 -
Fe XI 209.78 6.15 0.11 0.12 - -
Fe X 207.45 6.05 0.05 0.03 - -
Ni XI 207.92 6.1 0.03 - - -
Cont. 0.08 0.04 0.07 0.41

304 Å He II 303.786 4.7 0.33 0.32 0.27 0.29
He II 303.781 4.7 0.66 0.65 0.54 0.58
Ca XVIII 302.19 6.85 - - - 0.05
Si XI 303.33 6.2 - - 0.11 -
Cont. - - - -

335 Å Al X 332.79 6.1 0.05 0.11 - -
Mg VIII 335.23 5.9 0.11 0.06 - -
Mg VIII 338.98 5.9 0.11 0.06 - -
Si IX 341.95 6.05 0.03 0.03 - -
Si VIII 319.84 5.95 0.04 - - -
Fe XVI 335.41 6.45 - - 0.86 0.81
Fe XIV 334.18 6.3 - 0.04 0.04 -
Fe X 184.54 6.05 0.13 0.15 - -
Cont. 0.08 0.05 - 0.06

The count rates are normalised for each channel. Coronal hole
(CH), quiet Sun (QS), active region (AR) and flare (FL) plasma.

a Tp corresponds to the log of the temperature of maximum abun-
dance.

2 From O’Dwyer et al. 2010



Let the temperature range be divided into n neighboring bins, 
so that: 

where the j-th temperature bin has range T ∈ [Tj,Tj+∆Tj). 
Assuming that Ki(T) is piecewise constant in each temperature 
bin, we have:

where DEM(T) is the differential emission measure (in units of 
cm-5 K-1) of plasma along the line-of-sight. ne(T) is the electron 
number density of plasma at temperature T. The challenge is to 
solve for DEM(T) given a set of EUV measurements y.
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4.1. Statement of the problem

AIA EUV observations can be related to the physical properties of optically thin coronal plasma as an integral over
temperature space:

yi =
Z 1

0

Ki(T ) DEM(T )dT, (1)

where yi is the exposure time-normalized pixel value in the i-th AIA channel (in units of DN s�1 pixel�1), Ki(T ) is
the temperature response function (in units of DN cm5 s�1 pixel�1) and DEM(T ) =

R1
0

n

2

e(T )dz is the di↵erential
emission measure (in units of cm�5 K�1) of the plasma along a line-of-sight. ne(T ) is the electron number density of
plasma at a certain temperature T . Let the temperature range be divided into n neighboring bins, so that

yi =
nX

j=1

Z Tj+�Tj

Tj

Ki(T )DEM(T )dT, (2)

where the j-th temperature bin has range T 2 [Tj , Tj + �Tj). The aim is to use AIA measurements to retrieve the
emission measure distribution (either in di↵erential or integral form).

Assume that Ki(T ) = Kij is piecewise constant in each j-th temperature bin, so

yi =
nX

j=1

KijEMj ,where (3)

EMj =
Z Tj+�Tj

Tj

DEM(T )dT. (4)

With a priori knowledge about the form of DEM(T ) over the range [Tj , Tj +�Tj), it is in principle possible to drop the
assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
we adopt this assumption since such information is not available.
Eq. (3) can be written in the following form

y = Kx, (5)

where K is an m⇥ n matrix with components Kij , y is an m-tuple corresponding to measurements by the AIA EUV
channels (m = 6 when using the 94, 131, 171, 193, 211 and 335 Å channels) and x is an n-tuple with components
given by EMj .

For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in
emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that

�

2 =
mX

i=1

✓
yi,obs

� yi,model

�i

◆
2

(6)

is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R

n. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy
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definition of �
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is less than m.
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assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
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is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R
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the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy
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AIA EUV observations can be related to the physical properties of optically thin coronal plasma as an integral over
temperature space:
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Z 1
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Ki(T ) DEM(T )dT, (1)

where yi is the exposure time-normalized pixel value in the i-th AIA channel (in units of DN s�1 pixel�1), Ki(T ) is the
temperature response function (in units of DN cm5 s�1 pixel�1) and DEM(T )dT =
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e(T )dz, where DEM(T ) is
called the di↵erential emission measure (in units of cm�5 K�1) of the plasma along a line-of-sight. ne(T ) is the electron
number density of plasma at a certain temperature T . Let the temperature range be divided into n neighboring bins,
so that
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where the j-th temperature bin has range T 2 [Tj , Tj + �Tj). The aim is to use AIA measurements to retrieve the
emission measure distribution (either in di↵erential or integral form).
Assume that Ki(T ) = Kij is piecewise constant in each j-th temperature bin, so
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EMj =
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DEM(T )dT. (4)

With a priori knowledge about the form of DEM(T ) over the range [Tj , Tj+�Tj), it is in principle possible to drop the
assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
we adopt this assumption since such information is not available.
Eq. (3) can be written in the following form

y = Kx, (5)

where K is an m⇥ n matrix with components Kij , y is an m-tuple corresponding to measurements by the AIA EUV
channels (m = 6 when using the 94, 131, 171, 193, 211 and 335 Å channels) and x is an n-tuple with components
given by EMj .
For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in

emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that
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is minimized. Here yi,obs is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.
In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides

in an a�ne subspace of Rn. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,

and



The above is a matrix equation of the form y = Kx, where  
• K is an m x n response matrix*, with each row corresponding to the 

temperature response function of one AIA channel 
• y is an m-tuple corresponding of AIA count (rates), and  
• x is an n-tuple with components EMj.  

The He II line in the 304 Å channel is not well-modeled by CHIANTI 
(Warren, 2005, ApJ 157, 147) so it is usually not used for DEM analysis. 
So m = 6 for AIA. Usually we want more than 6 temperature bins. For m 
< n, the matrix equation y = Kx represents an underdetermined system. 

*Matrix elements depends on basis functions used for computing the 
integral

Statement of the Problem: y = Kx 
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is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
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4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
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2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy
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Function to minimize: | y - Kx |2 or |(y - Kx)/𝞂|2 

Basically, minimize difference between observed and predicted 
counts. The benefits of a least-squares approach is that it leads to 
Euler-Lagrange equations that can be used to seek (global or local) 
minima.  

For an overdetermined system, we know no single model will fit all 
the data. So 𝛘-squared minimization is ideal. However, for 
underdetermined systems such an approach can be subject to the 
perils of overfitting.  

Usual way to get around this: 
P a r a m e t e r i z a t i o n : e . g . G u e n n o u e t a l ( 2 0 1 2 a , b ) , 
xrt_dem_iterative2.pro (M. Weber in SSW, see also Cheng et al 
2012) 
Regularization: e.g. Hannah & Kontar (2012), Plowman et al. (2013)

Usual Approach: 𝛘-squared Minimization



We address the inverse problem using an approach different 
than chi-squared minimization. The set of solutions satisfying 
the underdetermined matrix equation y = Kx lies in an affine 
subspace of Rn.  We pick the solution x# within this subspace 
such that:

6

approach. To be specific, the most sparse solution is one that

minimizes k ~x kl0 subject to K~x = ~y. (7)

Here k ~x kl0 is the l-zero norm of ~x, which is just the number of non-zero components of ~x. Since there is no e�cient
algorithm for solving this l-zero minimization problem, Candes & Tao (2006) instead proposed that one should solve
the corresponding l-1 minimization problem, namely

minimize k ~x kl1 subject to K~x = ~y, (8)

where k ~x kl1=
nP

j=1

k xj k. This is the underpinning of our approach to tackling the EM inversion problem. Since

the objective function is convex, algorithms developed for convex optimization can be used to solve for ~x. In practice,
uncertainties in the instrument response matrix (Kij) as well as in the measurements (~y) means that the sought-after
solution may not necessarily satisfy Eq. (5). Furthermore, for EMs we must impose that the solution be positive
semidefinite (i.e. EMj � 0). So our method solves the following linear program:

minimize k ~x kl1 subject to K~x~y + ~⌘, (9)

K~x�max(~y � ~⌘, 0), (10)

~x� 0. (11)

The inequality conditions (13) and (14) provide some tolerance for the solution to deviate from satisfying Eq. (5). For
the implementation we choose ⌘j = 2

p
yj . Other than the problem as stated by (13) - (14), no other conditions (e.g.

the shape of the EM curve) are imposed.

minimize
nX

j

xj subject to K~x = ~y, ~x � 0. (12)

minimize
nX

j

xj subject to K~x~y + ~⌘, , ~x � 0, (13)

K~x�max(~y � ~⌘, 0). (14)

Cheung et al. 2015: The Sparse Solution

The linear program above finds a solution that minimizes the 
L1-norm of the solution vector (c.f. Candes 2006). This is not 
chi-squared minimization. 
If K is the response function sampled by Dirac Delta functions at 
specific temperatures, this is equivalent to minimizing the total 
EM. If other basis functions are used, there is no simple 
corresponding physical interpretation. 



We are unaware of physical principles pertaining to 
coronal plasma that motivate the optimization problem 
posed above. However, this choice has some important 
benefits: 
1)It does not overfit (consistent with the principle of 

parsimony,  i.e. Ockham’s Razor). 
2)It ensures positivity of the solution (if solutions 

exist). 
3)It is an L1-norm minimization problem, so we can use 

standard techniques from compressed sensing (c.f. 
Candes & Tao 2006). 

 BTW the L1-norm of a vector x = 𝝨 |xi| 
4) Speed: O(104) solutions / sec with single IDL thread. 

The Sparse Solution

See Asensio Ramos & De La Cruz Rodriguez (2015) for application of related 
techniques to 2D coupled Stokes inversion.  



In practice, measurement uncertainties imply that the 
equality y = Kx may not be satisfied. So our method 
solves the followed modified linear program:

6

approach. To be specific, the most sparse solution is one that

minimizes k ~x kl0 subject to K~x = ~y. (7)

Here k ~x kl0 is the l-zero norm of ~x, which is just the number of non-zero components of ~x. Since there is no e�cient
algorithm for solving this l-zero minimization problem, Candes & Tao (2006) instead proposed that one should solve
the corresponding l-1 minimization problem, namely

minimize k ~x kl1 subject to K~x = ~y, (8)

where k ~x kl1=
nP

j=1

k xj k. This is the underpinning of our approach to tackling the EM inversion problem. Since

the objective function is convex, algorithms developed for convex optimization can be used to solve for ~x. In practice,
uncertainties in the instrument response matrix (Kij) as well as in the measurements (~y) means that the sought-after
solution may not necessarily satisfy Eq. (5). Furthermore, for EMs we must impose that the solution be positive
semidefinite (i.e. EMj � 0). So our method solves the following linear program:

minimize k ~x kl1 subject to K~x~y + ~⌘, (9)

K~x�max(~y � ~⌘, 0), (10)

~x� 0. (11)

The inequality conditions (13) and (14) provide some tolerance for the solution to deviate from satisfying Eq. (5). For
the implementation we choose ⌘j = 2

p
yj . Other than the problem as stated by (13) - (14), no other conditions (e.g.

the shape of the EM curve) are imposed.

minimize
nX

j

xj subject to K~x = ~y, ~x � 0. (12)

minimize
nX

j

xj subject to K~x~y + ~⌘, (13)

~x � 0, K~x�max(~y � ~⌘, 0). (14)
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The vector η  is a measure of the uncertainty in the 
count rate and provides tolerance for the predicted 
counts (Kx) to deviate from the observed values (y). To 
enforce positive counts the lower bound is set to max(y-
η, 0). 

Handling noise
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APPENDIX

QUADRATURE SCHEME

Let i = 1, 2, ...,m denote the index over a set of wavelength band channels and/or line spectra. Let the DEM function
be written in terms of a set of positive semidefinite basis functions {bj(log T ) � 0 | k = 1, 2, ..., l}, viz.

DEM(log T ) =
lX

k=1

bk(log T )xk, (A1)

with quadrature coe�cients xk � 0. Approximating the integrals in equation (1) as sums in log T space, we have

yi =
nX

j=1

lX

k=1

KijBjkxk� log T, (A2)

where j = 1, 2, ..., n is the index over temperature bins, Kij = Ki(log Tj) and Bjk = bk(log Tj). The response matrix
K = (Kij) has dimensions m ⇥ n. The basis matrix B = (Bjk) has dimensions n ⇥ l, with the k-th column vector
corresponding to the k-th basis function bk(log Tj). Defining the dictionary matrix D = KB, the set of integral
equations (1) can be written in matrix form:

~y = D~x, (A3)

where the sought-after solution vector ~x is an l-tuple with components xk� log T (k = 1, 2, ..., l). When the number
of basis functions exceeds the number of image channels (i.e. l > m), the linear system Eq. (A3) is underdetermined.
For the results in this paper, we use an equidistant grid in log T with � log T = 0.1 ranging from log T = 5.5 to 7.5

(i.e. n = 21). Over this temperature grid, the set of Dirac-delta basis functions {bDirac

k | k = 1, ..., n} is

b

Dirac

k (log Tj)=1, if log Tj = log Tk, (A4)

=0, otherwise. (A5)

Recall that the basis matrix B consists of column vectors corresponding to basis functions. So for the set of Dirac-delta
functions BDirac = I (the identity matrix).
In addition to Dirac-delta functions, we also use basis functions consisting of truncated Gaussians. Each Gaussian

function of width a generates a set of basis functions {bak | k = 1, ..., n}, where

b

a

k(log Tj)=exp


� (log Tj � log Tk)2

a

2

�
, if | log Tj � log Tk|  1.8a. (A6)

=0, otherwise. (A7)

The Gaussian basis functions are truncated (i.e. set to zero) for values of log Tj outside the temperature grid used
for inversions. The corresponding basis matrix for this set is denoted Ba. Di↵erent sets of basis functions can be
combined by concatenating their associated basis matrices. For the inversions shown here, we use the combined basis
matrix

B =
�
BDirac|Ba=0.1|Ba=0.2|Ba=0.6

�
. (A8)

Note the individual Gaussian basis functions are not normalized by their sums (i.e. all have maximum value of unity at
their peaks). So given multiple solutions that equally fit the data, the method will prefer a solution consisting of a single
broad Gaussian over solutions consisting of multiple narrow Gaussians (and/or Dirac-delta functions). Empirically,
we find the choice of not normalizing the Gaussian basis functions results in better inversions results (more on this
below). Because n = 21, B as indicated above (see Fig. 15 for a graphical representation) has dimensions 21 ⇥ 84
and D has dimensions m ⇥ 84. With six AIA channels, m = 6. Even when AIA is augmented by XRT or EIS data,
m ⌧ 84. This makes Eq. (A3) a highly underdetermined system, which we solve by the method of basis pursuit (see
section 3).
Seeking to solve this underdetermined system is the same as the following geometric problem. Suppose we aim to

express some given column vector ~y (of dimension m) as the linear combination of members drawn from a family of

column vectors. Let this family of column vectors be denoted {~dk | k = 1, ..., l}. The goal is to find coe�cients xk

such that ~y =
Pl

k=1

xk
~

dk, which is equivalent to the linear system (A3) if the dictionary matrix D is constructed by

concatenating the ~

dk’s side by side. Because l > m, {~dk | k = 1, ..., l} is an overcomplete set of possible basis vectors
(i.e. dictionary) for building up ~y. So the non-uniqueness of a DEM solution satisfying Eq. (A3) is the same as the
multiplicity of ways to find a basis for ~y. Basis pursuit addresses this by seeking a solution that minimizes the L1-norm
|~x|

1

. In other words, basis pursuit finds the most sparse representation of ~y from an overcomplete dictionary D (Chen
et al. 1998).

Te
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In	 practice	 we	 solve	 this	 ➜



Guennou et al (2012) reported that when the input gaussian is 
moderately wide (0.3 log Te, right panel), AIA 6-channel 
inversions yield spurious temperatures.

The Astrophysical Journal Supplement Series, 203:26 (14pp), 2012 December Guennou et al.

(a)

(b)

(d)

(c)

(f)

(g)

(e)

Figure 5. Same as Figure 4, but with a plasma DEM width increased to σP = 0.3 log Te . Many perturbations, already visible in Figure 4, are amplified: the distribution
is wider, irregular, and the diagonal structure disappeared (see panel (a)). The presence of multiple solutions of comparable probabilities is increased for a large range
of plasma temperatures T P

c , leading to very different estimated T I
c from the input T P

c . The probability map P (T I
c |T P

c ) can help us to properly interpret the inversion
result, taking into account the secondary solutions and providing their respective probability.

panels (b) and (c). Therefore, the inversion results T I
c contain no

information on the plasma central temperature T P
c . This is illus-

trated by the lack of structure in the probability map P (T P
c |T I

c )
of panel (e). Profile (g) shows that for T I

c = 1.5 × 106 K, the
distribution of T P

c extends over entire the temperature range.

2.3. Interpretation

We have shown that as the width of the plasma DEM
increases, multiple solutions to the isothermal inversion appear.
This phenomenon has been already mentioned by Patsourakos
& Klimchuk (2007), using triple-filter TRACE data. After a
proper treatment of the uncertainties, the authors found that their
observations of coronal loops were consistent with both a high
(≈1.5 × 106 K) and a low (≈5 × 105 K) isothermal plasma
temperature. They correctly concluded that without a priori
knowledge of the physical conditions in these loops, they could
not rule out the cool plasma solutions. Even though we used
six bands, multiple solutions appear anyway with increasing
plasma width. In addition, as we have seen in Paper I, multiple
solutions can exist even with an isothermal plasma if only a
limited number of bands is available. This is another illustration
of the similar effects of errors and multithermality.

The isothermal temperature solutions become progressively
decorrelated from the plasma central temperature as the width
of the DEM increases. For very large DEMs (Figure 6), the
inversion process yields exclusively either 3 × 105 K or 106 K
whatever the plasma T P

c . These two temperatures correspond to

the preferential locations of the minima shown in the criteria of
Figure 3. This is a generalization of the phenomenon analyzed
by Weber et al. (2005) in the simpler case of the TRACE 19.5
over 17.3 nm filter ratio. The authors showed that in the limit of
an infinitely broad DEM, the band ratio tends to a unique value
equal to the ratio of the integrals of the temperature response
functions. Furthermore, they showed that as the width of the
DEM increases, the temperature obtained from the band ratio
becomes decorrelated from the DEM central temperature. We
have found a similar behavior in the more complex situation
of six bands. This is not, however, an intrinsic limitation of
AIA. We can predict that the same phenomenon will occur
with any number of bands or spectral lines. Indeed, for an
infinitely broad DEM, since the observed intensities are equal
to the product of the total EM by the integral of the response
functions (Equation (2)), they are independent from the plasma
temperature. Therefore, the inversion will yield identical results
for any plasma temperature T P

c , whatever the number of bands
or spectral lines.

2.3.1. Defining Isothermality

As already noted in Section 2.1 and in Figure 2, larger DEM
widths correspond to larger squared residuals. From Paper I, the
distribution of residuals to be expected for an isothermal plasma
is known. Examining, then, the residuals for the solutions given
in the probability maps of Section 2.2, the solutions may not
all be statistically consistent with the isothermal hypothesis. We
will thus analyze the distribution of residuals to define rigorously
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(a)

(f)

(g)

(c)

(d)

(b)

(e)

Figure 4. Maps of probabilities considering a Gaussian DEM plasma ξP = ξgau having a narrow thermal distribution of σP = 0.1 log Te , obtained by 5000 Monte
Carlo realizations of the random and systematics errors nb and sb, and investigating the isothermal solutions. (a) Probability map P (T I

c |T P
c ), vertically reading. The

central temperature T I
c resulting from the inversion is presented whatever the total emission measure EMI . ((b) and (c)) Probability profiles of T I

c for plasma central
temperatures T P

c = 1.5 × 106 and 7 × 106 K (vertical lines in panel(a)). (d) Total probability of obtaining T I
c whatever T P

c (see Section 1 and Section 2.1 of Paper I).
(e) Vice versa, probability map P (T P

c |T I
c ), horizontally reading, inferred by means of Bayes’ theorem using P (T I

c |T P
c ) and P (T I

c ). ((f) and (g)) Probability profiles
of T P

c knowing that the inversion result is, from top to bottom, 7 × 106 and 1.5 × 106 K.

case of an isothermal plasma (see Figure 6 of Paper I), the
distribution is wider, irregular, and deviations from the diagonal
greater than its local width are present. As shown by panel (d)
and the nodosities in the map (a), the unconditional probability
of obtaining a result T I

c is nonuniform, meaning that some
inverted temperatures are privileged whereas others are unlikely.
Compared with Figure 6 of Paper I, profile (b) shows that the
probability of secondary solutions at T P

c = 1.5 × 106 K is
increased with respect to the isothermal case. The apparition of
these two solutions is illustrated in the bottom row of Figure 2.
The bottom right panel corresponds to a realization of the errors
yielding a solution close to the diagonal, while the bottom left
panel of the same figure illustrates a case where the absolute
minimum of the criterion is located at low temperature. Using
the map of P (T P

c |T I
c ), it is, however, possible to correctly

interpret the low-temperature solutions as also compatible with
1.5 × 106 K plasma (profile (g)).

In Figure 5, the plasma DEM width is increased to σP =
0.3 log Te. As a result, the above-described perturbations
with respect to the isothermal plasma case are amplified. The
diagonal structure has almost disappeared, with discontinuities
and reinforced and more diffuse nodosities. Multiple solutions
of comparable probabilities are present over large ranges of
plasma temperatures and consequently, the estimated T I

c can
be very different from the input T P

c . For example, panel

(c) shows that for a 7 × 106 K plasma, the most probable
T I

c is either 1.6 × 105 or 3 × 105 K. The unconditional
probability P (T I

c ) of panel (d) is very nonuniform, some
ranges of estimated temperatures being totally unlikely (e.g.,
T I

c = [1.5 × 106, 4 × 106] K) while others are probable for
large intervals of T P

c (e.g., T I
c = 3×105 K or 106 K). However,

despite the jaggedness of P (T I
c |T P

c ), the map of P (T P
c |T I

c ) can
once again help to properly interpret the result of the inversion.
For example, profile (g) shows that for T I

c = 1.5 × 106 K, the
distribution of T P

c is distributed around T P
c = 107 K, which

is exactly the plasma temperature that can yield an inversion
at T I

c = 1.5 × 106 K (see panel (a)). Panel (f), providing the
probability distribution T P

c knowing that the inversion result
is T I

c = 7 × 106 K, exhibits a broad probability distribution
around T P

c = 1.5 × 107, showing that the plasma temperature
thus deduced is very uncertain. This is to be compared to the
0.05 log T P

c temperature resolution of the isothermal case (see
Section 3.2 of Paper I).

As the DEM becomes even larger, the impact on the robust-
ness of the inversion becomes greater. At σP = 0.7 log Te,
the probability map P (T I

c |T P
c ) of Figure 6(a) and the corre-

sponding probability P (T I
c ) clearly show two privileged so-

lutions: T I
c = 106 and 3 × 105 K. The estimated isothermal

temperatures are always the same for any T P
c , as illustrated by

5

Validation Exercise 1: Gaussian DEMs
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tion in recent years by the compressed sensing commu-
nity. Compressed sensing is concerned with the recovery
of signals where the number of measurements is less than
(sometimes much less than) the number of components
in the reconstructed signals.
In an underdetermined linear system such as given by

Eq. (2), the family of solutions satisfying the equation
resides in an a�ne subspace of Rn. The challenge is to
select a solution within this subspace that most faithfully
represents the underlying scenario. In a series of papers
on solutions to underdetermined linear systems, Candes
& Tao (e.g. 2006, 2007) showed that, when compared to
a least-squares/minimum energy approach, the assump-
tion of sparsity often results in a solution that is a better
approximation to the real signal. This realization has
led to immense advances in many fields where the recon-
struction of a linear signal is desired from undersampled
data (e.g. time series, images, and tomographic magnetic
resonance imaging; see Donoho 2006; Lustig et al. 2007).
Mathematically, the most sparse solution is defined as

one that

minimizes ||~x||0 subject to D~x = ~y. (7)

Here ||~x||0 is the L0 norm of ~x, which is just the number
of non-zero components of ~x. Since there is no known
e�cient algorithm for solving this L0 norm minimization
problem, Candes & Tao (2006) instead proposed that one
should solve the corresponding L1 norm minimization
problem, namely

minimize ||~x||1 subject to D~x = ~y, (8)

where ||~x||1 =
nP

j=1
||xj ||. This is the underpinning of our

approach to tackling the EM inversion problem.
In practice, systematic (e.g. in the instrument response

matrix Kij) and random errors in the measurement vec-
tor ~y means that the sought-after solution may not nec-
essarily satisfy Eq. (2). Furthermore, for EMs we must
impose that the solution be positive semidefinite (i.e.
xj � 0). So our method solves the following linear pro-
gram:

LP1 : minimize
nP

j=1
xj subject to (9)

D~x  ~y + ~⌘, (10)

D~x � max(~y � ~⌘, 0), (11)

~x � 0. (12)

The inequality constraint (12) ensures the solutions are
positive semidefinite. The inequality constraints (10) and
(11) provide some tolerance for the solution to deviate
from satisfying Eq. (2). The inequality constraints (10)
and (11) provide some tolerance for the solution to de-
viate from satisfying Eq. (2). Note that this is not the
same as saying that the uncertainty in each channel is
dominated by photon counting statistics; in addition to
the square root dependence of statistical errors, there are
terms that are constant (read noise) and linear (calibra-
tion error) with respect to the signal. It is not necessary
(or, indeed, possible) to derive the tolerance ~⌘ on a rig-
orous analysis of all possible error terms for each obser-
vation vector, and the tolerance is not used as an error
estimate to compute a reduced �

2.

We are unaware of physical principles describing coro-
nal plasmas that would motivate such an objective func-
tion. However, this choice is appealing in a number of
ways. First of all, this scheme minimizes the number of
components (in terms of quadrature weights) needed to
fit the observations, and in this sense it avoids the prob-
lem of overfitting. This behavior is consistent with the
principle of parsimony (more commonly known as Ock-
ham’s Razor). Secondly, this scheme ensures positivity
of the solution (if a solution is found).
Thirdly, the problem posed as LP1 lends itself to being

solved by fast numerical techniques. The computational
requirement of any DEM method is a practical concern
since AIA delivers data at such a high rate (of order 105

observation vectors ~y per second). The DEM inversion
problem posed as LP1 is an example of basis pursuit. Ba-
sis pursuit is a technique commonly employed in the com-
pressed sensing literature for reconstructing undersam-
pled signals (Chen et al. 1998). Since we require ~x � 0,
the convex objective function ||~x||1 reduces to the simple
linear form

P
j xj . The linear program LP1 can then be

solved e�ciently using the simplex algorithm (Dantzig
et al. 1955), which is designed to find optimal solutions
to problems where the objective function is a linear form
and the constraints are posed as linear inequalities. Our
implementation of the DEM inversion code makes use
of the simplex function in the IDL data analysis pack-
age. The implementation of the simplex method in IDL
is based on the method as detailed in section 10.8 of Nu-
merical Recipes by Press, Flannery, & Teukolsky (1986).
The computational speed of the inversion code is dis-
cussed in section 4.1.
Regardless of the advantages listed above, a DEM in-

version method would be worthless if it only (or mostly)
returned solutions that are not representative of the
emitting coronal plasma. In the next section, we present
results from validation tests of the method.

3. VALIDATION TESTS

In this section, we test our inversion method against a
diverse set of thermal models of varying complexity and
realism.

3.1. Gaussian / log-normal DEM distributions

Log-normal distributions are commonly chosen to serve
as test cases for inversion codes (Hannah & Kontar 2012;
Guennou et al. 2012a,b; Plowman et al. 2013) and as
functional forms for DEM inversions of AIA data (e.g.
Aschwanden & Boerner 2011). They correspond to Gaus-
sian functions in log T space:

⇠(T, Tc,�) =
EM0

�

p
2⇡

exp


� (log T � log Tc)2

2�2

�
, (13)

where Tc is the peak temperature and � is the Gaussian
width. The normalization is chosen such that the total
emission measure is EM0 =

R1
0 ⇠dlogT .2 The valida-

tion test for the inversion method was performed over a

2 Strictly speaking, ⇠(T ) is not the di↵erential emission measure
as defined in Eq. (1). The two are related by the following relation
DEM(T ) = ln 10T�1

⇠(T ). Nevertheless, we will follow the com-
mon practice in the literature and refer to both DEM(T ) and ⇠(T )
as di↵erential emission measure functions.

EM0 = 1029 cm2



Validation Exercise 2: Quasi-steady 
loops in a NLFFF model of AR 11158

Magnetic Model: Quasi-Grad-Rubin Non-linear force-
free Field reconstruction of AR 11158. 
Thermal Model: Quasi-steady loops with different 
heating functions. 



AR 11158 Model A



AR 11158 Model B



Validation Exercise 3: MHD Model

MHD model of AR formation (with thermal conduction) by 
Chen et al. (2014A&A…564A..12C, 2015NatPh..11..492C)



MHD model of AR formation (with thermal conduction) by 
Chen et al. (2014A&A…564A..12C, 2015NatPh..11..492C)

Validation Exercise 3: MHD Model



CHAPTER 2. X-RAY TELESCOPE SOFTWARE GUIDE 51

Figure 2.13: Example of XRT temperature responses calculated for two di↵erent dates. The
solid lines are responses calculated for 2007-03-01, before the first CCD bakeout, and the
dashed curves are calculated for 2008-03-01, in the regime of regular bakeouts. The com-
parison shows how the sensitivity in the lower energy range, significantly decreased by the
contamination material, has been recovered through CCD bakeout and maintained with reg-
ular CCD bakeouts.

2.10.1 Calculating XRT Filter Response with Non-Standard Spectra
You can calculate the XRT filter response using non-standard spectra by using the routine
make xrt emiss model.pro; it puts a spectral emission model into a structure format that
other XRT routines will expect.

Basic call:
IDL> emiss_model = make_xrt_emiss_model(model name, wave, temp, $

spectrum, abund_model, ioneq_model, dens_model, $
data_files = data_files)

Inputs:

MODELNAME: (string scalar) This will be the name/ID given to this spectral model.

WAVE: (float array, [N�]) This is a 1D array of monotonically increasing wavelengths. Units
are in angstroms. Must correlate to one dimension of the SPEC array. See WLENGTH.

Validation Exercise 4: AIA-XRT Cross-Comparison*

*Not discussed in the paper



1.Load and prep an XRT image. 

2.Cutout AIA 94, 131, 171, 193, 211 & 335 level 1.5 data 
for XRT FOV as indicated by FITS keywords. 

1. DEM inversion (sun_coronal_ext.abund, chianti.ioneq). 

2. Sample DEMs onto XRT plate scale. 

3. Synthesize XRT image by folding response function 
against AIA DEM. 

3.Use tr_get_disp to align actual and synthetic XRT 
images. 

4.Compare (following slides).

AIA-XRT Cross-Comparison Analysis Procedure



2D histograms



2D histograms



2D histograms



Synthetic XRT Images



• Synthetic XRT images from DEMs derived using 
only AIA Reproduces morphology, but counts 
are too low compared to XRT by ~ 30 - 40%. 

• Is this good enough? 

• Is the discrepancy between synthetic and real 
XRT images due to limitations of the inversion, or 
due to uncertainties of the absolute calibration of 
both instruments?

Validation Exercise 4: AIA-XRT Cross-Comparison



Log-normal DEMs: AIA 6 channels only



Log-normal DEMs: AIA 6 channels + XRT Be-thin







Black pixels are 
where no solutions 
were found

DEM movie 
of the emergence 
of AR 11158



log T = 6.3 log T = 6.5 log T = 6.7 log T = 6.9 log T = 7.1 log T = 7.3



Warren, Brooks & Winebarger (2011)





Side benefit: Image Denoising

y (AIA 131 Level 1.5) Kx# (from inversion)



Data-Driven Modeling (Again)



IRIS

Modeling of Homologous Jets



• SOT Ca II H images show jet 
structure similar to the jet studied 
by Wei Liu et al (2009).

• Lower-atmospheric contribution to 
Ca II H shows hints of a rotating 
pore and (perhaps) flux emergence.

• Indirect evidence of flux emergence 
from appearance of elongated 
darkenings followed by appearance 
of bright grains (e.g. Strous & 
Zwaan 1999, Guglielmino et al 
2010).



IRIS Observations

• SJI 1400,  SJI 1330 and SJI 2796 @ 24s cadence, 60’’ x 60’’ FOV,  0.167” arcsec pixel size 

• 20-step NUV and FUV spectral rasters with 2 arcsec steps, 2 min / raster, 38” x 60” 
FOV

• Focus on FUV spectra in this presentation.



Doppler shift maps using the Si IV 1394 transition region line 
(log Tmax = 4.8) observed by IRIS shows helical motion in all 
four jets





Red: Blos < 0
Blue: Blos > 0

Green: Bt



Origin of  
Homologous Helical Jets

• Heyvaerts & Priest (1977): 
Reconnection between emerging 
flux and ambient field  for solar 
flares. 

• Shibata et al (1992, 1994): 
Reconnection model for jets -> 
interpret post-jet loop as small 
flare. 

• Pariat,  Antiochos & DeVore (2010) 
showed that persistent twisting of a 
parasitic polarity embedded in 
opposite field region can lead to 
recurrent, homologous jets.  N ~ 1 
turn is needed twist up the field 
before a helical jet is emitted.



Magnetofriction model of homologous helical jets driven 
by HMI vector magnetograms (Cheung et al. 2015).



Magnetofriction model of homologous helical jets driven 
by HMI vector magnetograms (Cheung et al. 2015).

In a nutshell, the data and model 
support the mechanism proposed by 
Pariat et al. (2009, 2010) for 
homologous jets. Helical jets emitted 
after about injection of one turn. 
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better understanding of a key subdomain of the Sun-Earth system, namely the convection zone of 
the Sun up to the corona. It is in this region that the dominance of gas pressure over magnetic 
pressure is reversed and where the magnetic field becomes the dominant player in driving solar 
eruptions. The proposed deliverables will help researchers quantify the physical conditions in 
this important subdomain. The investigation is also relevant to the third goal of the LWS: 
“Human Exploration and Development: LWS provides data and scientific understanding 
required for advanced warning of energetic particle events that affect the safety of humans”. The 
science and tools resulting from this project will advance our understanding of the driver(s) of 
solar eruptions and assist the community with forecasting eruptions.  
 
This proposal draws heritage from the 2007 LWS TR&T Focus Science Team targeting the topic 
“Solar Active Regions”. Three PIs (DeRosa, McIntosh and De Pontieu) from that Focus Science 
Team are Co-Is on this proposal. Techniques on synthetic diagnostics, MHD simulations as well 
as magnetofrictional simulations were developed as part of the efforts funded by TR&T. As part 
of this project, we will use data from NASA’s SDO, Interface Region Imaging Spectrograph 
(IRIS), Hinode, STEREO missions, and NSF’s CoMP and DST/IBIS instruments. The goals of 
this proposal are directly aligned with the science goals of these missions and instruments. 

3.  PROJECT ELEMENTS 

 
We now lay out the tasks of the project. For the work schedule, please refer to Section 4. For 
milestones for each task, please refer to Table 1 in Section 4. 
 

Figure 1: Schematic representation of science investigation Tasks S1-S7. Radiative MHD 
simulations with MURaM and Bifrost (S1 & S2) will produce 3D models of erupting ARs. The 
model output will be used for synthesis of observables in the atmosphere. The availability of 
the 3D models and synthetic observables provide the basis for remaining science tasks. 
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“Best Observed X-
Flare” 
Sunquake: Judge et 
al. (2014) 
 
Filament Eruption 
before X-flare: 
Kleint et al. (2015) 

IRIS Fe XXI spectra: 
Young et al. (2015) 

Chromospheric 
Evaporation: Li et 
al. (2015)
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“Best Observed X-
Flare” 
Sunquake: Judge et 
al. (2014) 
 
Filament Eruption 
before X-flare: 
Kleint et al. (2015) 

IRIS Fe XXI spectra: 
Young et al. (2015) 

Chromospheric 
Evaporation: Li et 
al. (2015)
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Target AR: Level 0 Model

Magnetofrictional model of a twisted flux tube emerging next 
to a single preexisting sunspot. Red and blue show opposite 
polarity. Magnetogram at 3 different heights (left most is z=0).
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Target AR: Level 1 Model

Magnetofrictional model 
of a twisted flux tube 
emerging next to the 
‘preceding’ spot of a 
bipolar active region. 
Magnetogram at z=0 
shown in greyscale. 
Field lines illuminated by 
field-line-averaged j2. 
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MURaM-driven Magnetofrictional model  
Initial condition is a pair of developed spots. Twisted tube emerged 
north of preceding spot. The MURaM calculation stops at 
photosphere. Use electric field at z=0 to drive the magnetofriction 
(MF) model. The MF model indicates there will likely be interesting 
dynamics.  
Level 3: The MURaM run will be repeated to include the corona. 
Level 4: Then we will use Bifrost to get realistic thermodynamic 
structures to compute diagnostics. 

Target AR: Level 2 Model



Summary
• Magnetic Field Diagnostics: We really learned a lot from 

photospheric measurements. The prime target now should be 
the chromosphere (and maybe corona), which is arguably 
the best place for magnetic imaging of reconnection in the 
solar and astrophysical domains. 

• Thermal Diagnostics: SDO, IRIS and Hinode provide a wealth 
of information that covers the full range of temperatures in the 
solar atmosphere. AIA DEMs can be routinely computed with 
good(fair?) match with XRT observations.  

• Data-Driven models tighten the link between theory and 
observations. We have many idealized models but it’s time to 
test them against real cases. It’s also time to back up 
qualitative interpretations of observations with modeling. I 
hope more students and postdocs think about the problems 
that need to be tackled to advance in this direction.
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