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intuitive understanding
• J = 0 − 1 transition is considered

• density matrix for atoms under anisotropic 
irradiation

• emergence of coherence between magnetic 
sublevels by rotation of coordinates

• in#uence of magnetic !eld on density matrix

• derivation of Stokes parameters from density 
matrix
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density matrix
• eigenstates of Jz ,       , are considered and density 

matrix (operator) is expressed as

• isotropic case with J = 1

• off diagonal components appear when there 
exists coherence between basis states
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anisotropic photo-excitation
• unpolarized σ-light can be understood to involve 

incoherent two circularly polarized lights

• excitation gives rise to anisotropic
excited state

• there is no coherence (non-diagonal component) 
for this moment
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• consider a situation with a magnetic !eld in x-axis 
direction

• it would be useful to change the quantization axis 
from z- to x-axis

• density matrix is transformed in change of the 
quantization axis

x
y

z

B
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• quantization axis change is realized by rotation of 
coordinates ― Euler rotation

change of quantization axis

356 Appendix B Angular Momentum and Rotation Matrix
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Fig. B.1. Three steps of Euler rotations. Fist, we rotate the rigid body about the
z-axis by angle φ. The second rotation is performed about the y′-axis, which is the
body-fixed y-axis after the first rotation, by angle θ. The third rotation is about
the z′-axis by angle γ. The body y-axis now becomes the y′′-axis [2]

R(J)
MM ′ (φθγ) = e−iφMr(J)

MM ′ (θ)e−iγM ′
(B.9)

with
r(J)
MM ′ (θ) ≡ 〈JM |e−iθJy |JM ′〉. (B.10)

When r(J)
MM ′ (θ) is known, the calculation of a rotation matrix is straight-

forward. We give a special case for J = 1:

r(1)(θ) =




(1 + cos θ)/2 − sin θ/

√
2 (1 − cos θ)/2

sin θ/
√

2 cos θ − sin θ/
√

2
(1 − cos θ)/2 sin θ/

√
2 (1 + cos θ)/2



 . (B.11)

The matrix for other J-values can be constructed from (B.11). It can also
be directly obtained from Wigner’s formula:

r(J)
MM ′ (θ) =

∑

K

(−)K+M−M ′
√

(J + M)!(J − M)!(J + M ′)!(J − M ′)!
(J − K − M)!K!(J + M ′ − K)!(K + M − M ′)!

×
(

cos
θ

2

)2J−2K−M+M ′ (
sin

θ

2

)2K+M−M ′

. (B.12)
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• coordinates rotation is expressed as action of 
rotation operator            to kets or bras

• density matrix elements are formally
calculated as x

y

z

= ⇤ ⇥ ⇥ � (quantization axis → z-axis)

(quantization axis → x-axis)

rotation operator (matrix)

D( )

closure
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7



rotation operator (matrix)

( )( ) =�(� ) � +
⇤( + )!( � )!( + )!( � )!
( + � )! !( � � )!( � + )!

⇥ � ⇥ � + � � ⇥ � +

Wigner's formula

⇤ ⇥D( , , )⇥ � = D( )( , , ) = � ( + ) ( )( )
rotation with respect to y-axis
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• coherence emerges between M = +1 and
M = -1 states
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• no coherence appears in isotropic case
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• density matrix is derived as solution of equation 
of motion

• Hamiltonian HF consists of perturbation due to 
magnetic !eld

• μB and gJ are Bohr magneton and Landé g-factor, 
respectively, and ω0 corresponds to Larmor 
angular frequency

role of magnetic !eld
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• HF is explicitly written as

• right hand side of equation is
calculated as

= �¯
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• ρx (t) is readily obtained with initial condition

• line intensity is derived from density matrix 
obtained
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line intensity
= �� � � ��

closure can be
inserted anywhere
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Wigner-Eckart theorem
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dq → dx and dy

= √ ( − − )
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linear polarization components
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= ( − )�� �� �� ��
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more systematic method
• density matrix and Stokes parameters are derived 

in accordance with "Polarization in Spectral Lines" 
by E. Landi Degl'Innocenti and M. Landol!

• correspondence to the intuitive method of the 
results is considered
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• Hamiltonian can involve atomic processes in 
addition to magnetic !eld (QED is required)

280 CHAPTER 7

By means of substitutions i) to v) the statistical equilibrium equations and the
radiative transfer equations for the multi-level atom can be directly deduced from
the corresponding equations of Chap. 6.

7.1.a Statistical Equilibrium Equations

In Eqs. (6.62) and (6.69) we substitute (see also Fig. 6.1)

m → αJM

m′ → αJM ′

m′′ → αJM ′′

n → α!J!M!

n′ → α!J!M
′
!

p → αuJuMu

p′ → αuJuM ′
u ,

where the indices " (for ‘lower’) and u (for ‘upper’) denote any level of energy lower
(or higher, respectively) than EαJ . We obtain

d
dt
ραJ(M, M ′) = −2πi νL gαJ (M − M ′) ραJ(M, M ′)

+
∑

α
!
J

!

∑

M
!
M ′

!

ρα
!
J

!
(M!, M

′
!) TA(αJMM ′,α!J!M!M

′
!)

+
∑

α
u

J
u

∑

M
u

M ′
u

ρα
u

J
u
(Mu, M ′

u)
[
TE(αJMM ′,αuJuMuM ′

u)

+ TS(αJMM ′,αuJuMuM ′
u)
]

−
∑

M ′′

{
ραJ(M, M ′′)

[
RA(αJM ′M ′′) + RE(αJM ′′M ′)

+ RS(αJM ′′M ′)
]

+ ραJ (M ′′, M ′)
[
RA(αJM ′′M) + RE(αJMM ′′)

+ RS(αJMM ′′)
]}

, (7.5)

where the various rates (for which we have introduced shorthand notations) are
given by

TA(αJMM ′,α!J!M!M
′
!) =

=
32π4

h2c

∑

qq′

(−1)q+q′
(d−q)αJM, α!J!M!

(d−q′)∗αJM ′, α!J!M ′
!

Jqq′ (ναJ, α!J!
)

TE(αJMM ′,αuJuMuM ′
u) =

=
64π4

3hc3

∑

q

(d−q)α
u

J
u

M ′
u

, αJM ′ (d−q)
∗
α

u
J
u

M
u

, αJM ν3
α

u
J
u

, αJ

equation of motion
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of subsystems a and b , respectively, and ρ the density operator of the compound
system. If O(a) is an operator acting on subsystem a only, we have

〈
O(a)
〉

= Tr
(
ρO(a)

)
=
∑

nm

an | bm | ρO(a) | bm | an

=
∑

n

an |
{∑

m

bm | ρ | bm

}
O(a) | an

=
∑

n

an |Tr(b)(ρ) O(a) | an .

On the other hand, if ρ(a) is the density operator of subsystem a, we also have

〈
O(a)
〉

= Tr(a)
(
ρ(a) O(a)

)
=
∑

n

an | ρ(a) O(a) | an .

Comparison of these two relations shows that

Tr(b)(ρ) = ρ(a) . (3.87)

h) The time evolution of the density operator in the Schrödinger representation is
described by the equation

d
dt
ρ =

2π
ih

[H, ρ] , (3.88)

where the symbol [A, B] denotes the commutator of the two operators A and B,
and where H is the Hamiltonian of the system.

This equation follows directly from the Schrödinger equation applied to the state
vectors |ψ(α) entering the definition of ρ. In fact, we have from Eq. (3.79)

d
dt
ρ =
∑

α

pα

[(
d
dt

|ψ(α)

)
ψ(α)| + |ψ(α)

(
d
dt

ψ(α)|
)]

=
∑

α

pα

2π
ih

H |ψ(α) ψ(α)|−
∑

α

pα

2π
ih

|ψ(α) ψ(α)|H ,

which proves Eq. (3.88).

As far as the density-matrix elements are concerned, their time evolution depends
on the particular basis {|un }. If we choose the basis of the energy eigenvectors,
or, in other words, if the vectors |un are such that

H |un = En|un ,

we have from Eq. (3.88)

d
dt
ρmn =

d
dt

um| ρ |un =
2π
ih

um| [H, ρ] |un = −2πi νmn ρmn ,

standard
representation
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for

quantization axis in
B direction

20



• spherical representation of density matrix is 
obtained from standard matrix as

where K = 0, 1, ..., 2 J and Q = -K, ..., K

• it is understood as change of basis to express 
matrices: e.g., for J = 1/2

spherical tensors

( , ) :

� � � � � � � �

:

�
�

�

� �
�

��

� �
�

� �

�

�

124 CHAPTER 3

and for the magnetic sublevels of a given J-level

ρK
Q (αJ,αJ) = ρK

Q (αJ)

=
∑

MM ′

(−1)J−M
√

2K + 1
(

J J K
M −M ′ −Q

)
ραJ (M, M ′) , (3.101)

with the conjugation property

ρK
Q (αJ)∗ = (−1)Q ρK

−Q(αJ) . (3.102)

The analytical expressions for the most common multipole moments, as functions
of the ordinary density-matrix elements, are given in Tables 3.6 and 3.7.

The multipole moments can be also defined for a J-level having hyperfine struc-
ture. With self-evident notations, we have

αJIρK
Q (F, F ′) =

∑

ff ′

(−1)F−f
√

2K + 1

×
(

F F ′ K
f −f ′ −Q

)
ραJI(Ff, F ′f ′) . (3.103)

Relations similar to those in Eqs. (3.93) and (3.94) can be easily established for
the multipole moments. From Eq. (3.93), after some Racah algebra involving the
contraction of 3-j symbols (Eq. (2.42)), one obtains

ρK
Q (αJ) =

∑

FF ′

(−1)J+I+F ′+K
√

(2F + 1)(2F ′ + 1)

×
{

F F ′ K
J J I

}
αJIρK

Q (F, F ′) . (3.104)

In a similar way, from Eq. (3.94) the following relation can be proved

ρK
Q (βL) =

∑

JJ′

(−1)L+S+J′+K
√

(2J + 1)(2J ′ + 1)

×
{

J J ′ K
L L S

}
βLSρK

Q (J, J ′) , (3.105)

where ρK
Q (βL), the multipole moment for a spinless L-term, is defined by

ρK
Q (βL) =

∑

MLM ′
L

(−1)L−ML

√
2K + 1

(
L L K

ML −M ′
L −Q

)
ρβL(ML, M ′

L) .

An important property of the multipole moments follows from the evaluation
of the expectation value of an arbitrary spherical tensor operator T K

Q . Denoting

21



• standard representation requires two rotation 
matrices in rotation of coordinates,

while spherical representation needs just one 
rotation matrix

• many components vanish when there exists 
some symmetry
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Defining the multipole moments of the density matrix by the expression1

ρK
Q (αJ,α′J ′) =

∑

MM ′

(−1)J−M
√

2K + 1

×
(

J J ′ K
M −M ′ −Q

)
ρ (αJM,α′J ′M ′) , (3.97)

it is easy to prove that, under the rotation R of the reference system, the multipole
moments change according to the law

[
ρK

Q (αJ,α′J ′)
]

new
=
∑

Q′

[
ρK

Q′(αJ,α′J ′)
]

old
DK

Q′Q(R)∗ . (3.98)

The proof of Eq. (3.98) will not be given here, being quite similar to an analogous
proof given in Sect. 2.7. We just want to remark that the factor

√
2K + 1 in

Eq. (3.97) is inessential: in fact, if this factor is replaced by an arbitrary function
of K, Eq. (3.98) is still satisfied. The definition given in Eq. (3.97) is the same as
Omont’s (1977), but different authors give different definitions for the multipole
moments, and no definition has a special advantage.

Comparison of Eqs. (3.98) and (2.78) shows that the transformation law for the
multipole moments involves the complex conjugate of the rotation matrix, whereas
the transformation law for irreducible spherical tensors involves the rotation matrix
itself. Thus the multipole moments – as defined in Eq. (3.97) – are not, strictly
speaking, irreducible spherical tensors. A different definition could be given by
substituting ρ (α′J ′M ′,αJM) for ρ (αJM,α′J ′M ′) in Eq. (3.97), and the multipole
moments so defined would indeed satisfy the transformation law for irreducible
spherical tensors. However, this alternative definition has no advantages over ours.

Equation (3.97) can be easily inverted using the orthogonality relations of the
3-j symbols. From Eq. (2.23b) one obtains

ρ (αJM,α′J ′M ′) =
∑

KQ

(−1)J−M
√

2K + 1

×
(

J J ′ K
M −M ′ −Q

)
ρK

Q (αJ,α′J ′) . (3.99)

The conjugation property of the multipole moments follows from Eq. (3.97) and
from the Hermitian character of the density operator

ρK
Q (αJ,α′J ′)∗ = (−1)J−J′−Q ρK

−Q(α′J ′,αJ) . (3.100)

Similarly to Sect. 3.6, one can introduce shorthand notations for the multipole
moments when dealing with restricted subspaces. For instance, for the multipole
moments relative to the magnetic sublevels of a term one can write

ρK
Q (αJ,αJ ′) = αρK

Q (J, J ′) ,

1 Note that for any atom (or ion) the quantum numbers J and J ′ are both integers or both
half-integers, thus the rank K of the multipole moments is always an integer.

122 CHAPTER 3

where ML is the projection of the orbital angular momentum on the z-axis, and
then introducing the inner structure due to the spin, one obtains

ρβL(ML, M ′
L) =

∑

JJ′MM ′M
S

(−1)M−M ′√
(2J + 1)(2J ′ + 1)

×
(

L S J
ML MS −M

)(
L S J ′

M ′
L MS −M ′

)

× ρβLS(JM, J ′M ′) . (3.94)

We want to remark that the density-matrix elements on the basis of the eigen-
vectors of the angular momentum depend on the reference system chosen to define
such eigenvectors. If R is the rotation that brings a reference system (the ‘old’
one) into another reference system (the ‘new’ one), the eigenvectors of the angular
momentum in the new system are connected with those in the old system by the
relation

|JM new = D(R) |JM old ,

so that the transformation law for the density-matrix elements is the following

[
ρ (αJM,α′J ′M ′)

]

new
=

= new αJM | ρ |α′J ′M ′
new = old αJM |D†ρD |α′J ′M ′

old

=
∑

NN ′

DJ
NM (R)∗ DJ′

N ′M ′(R)
[
ρ (αJN,α′J ′N ′)

]

old
. (3.95)

In particular, for the matrix elements diagonal with respect to α and J

[
ραJ (M, M ′)

]

new
=
∑

NN ′

DJ
NM (R)∗ DJ

N ′M ′(R)
[
ραJ(N, N ′)

]

old
. (3.96)

3.7. Multipole Moments of the Density Matrix

As shown by Eq. (3.95), the transformation law for the density-matrix elements
on the basis of the eigenvectors of the angular momentum involves the product of
two rotation matrices. We can however construct – similarly to Sect. 2.7 – linear
combinations of these matrix elements whose transformation law involves just one
rotation matrix. By so doing we obtain the irreducible spherical components of the
density matrix, which are often referred to as the multipole moments of the density
matrix or the spherical statistical tensors.

advantages

22



• multiplying both sides in equation of motion by

and carrying out summation over M and M' give

spherical representation

284 CHAPTER 7

ηS
i (ν, #Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2Ju + 1)B(αuJu → α"J")

×
∑

M
u

M ′
u

M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

(7.10b)

ρA
i (ν, #Ω) = ηA

i (ν, #Ω)
{
Re → Im

}
(7.10c)

ρS
i (ν, #Ω) = ηS

i (ν, #Ω)
{
Re → Im

}
(7.10d)

εi(ν, #Ω) =
2hν3

c2
ηS

i (ν, #Ω)

=
hν

4π
N
∑

α
!
J

!

∑

α
u

J
u

(2Ju + 1)A(αuJu → α"J")

×
∑

M
u

M ′
u

M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

. (7.10e)

7.2. The Multi-Level Atom in the Spherical Statistical
Tensor Representation

We will now convert the equations of the previous section into the spherical statis-
tical tensor representation.

7.2.a Statistical Equilibrium Equations

Multiplying both sides of Eq. (7.5) by

(−1)J−M
√

2K + 1
(

J J K
M −M ′ −Q

)

and carrying out the summation over M and M ′ we obtain, with the use of
Eqs. (3.97) and (3.99)

d
dt
ρK

Q (αJ) = −2πi νL gαJ Q ρK
Q (αJ)

+
∑

α!J!

∑

K!Q!

ρ
K

!
Q!

(α"J") TA(αJKQ,α"J"K"Q")+
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+
∑

α
u

J
u

∑

K
u

Q
u

ρ
Ku
Q

u
(αuJu)

[
TE(αJKQ,αuJuKuQu)

+ TS(αJKQ,αuJuKuQu)
]

−
∑

K′Q′

ρK′

Q′ (αJ)
[

RA(αJKQK ′Q′) + RE(αJKQK ′Q′)

+ RS(αJKQK ′Q′)
]

, (7.11)

where

TA(αJKQ,α"J"K"Q") =
√

(2K + 1)(2K" + 1)

×
∑

MM ′

∑

M
!
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!
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J J K
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J" J" K"
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" −Q"
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√
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J J K
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TS(αJKQ,αuJuKuQu) =
√
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× TS(αJMM ′,αuJuMuM ′
u)

RA(αJKQK ′Q′) =
√

(2K + 1)(2K ′ + 1)

×
∑

MM ′M ′′

(
J J K
M −M ′ −Q

)

×
{(

J J K ′

M −M ′′ −Q′

)
RA(αJM ′M ′′)

+ (−1)Q′−Q

(
J J K ′

M ′′ −M ′ −Q′

)
RA(αJM ′′M)

}
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ηS
i (ν, #Ω) =
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4π
N
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M
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!
qq′

3
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Ju J" 1
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)(
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−M ′
u M" −q′

)

× Re
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Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

(7.10b)

ρA
i (ν, #Ω) = ηA

i (ν, #Ω)
{
Re → Im

}
(7.10c)

ρS
i (ν, #Ω) = ηS

i (ν, #Ω)
{
Re → Im

}
(7.10d)

εi(ν, #Ω) =
2hν3

c2
ηS

i (ν, #Ω)

=
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4π
N
∑
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!

∑

α
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J
u
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×
∑

M
u

M ′
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M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

. (7.10e)

7.2. The Multi-Level Atom in the Spherical Statistical
Tensor Representation

We will now convert the equations of the previous section into the spherical statis-
tical tensor representation.

7.2.a Statistical Equilibrium Equations

Multiplying both sides of Eq. (7.5) by

(−1)J−M
√

2K + 1
(

J J K
M −M ′ −Q

)

and carrying out the summation over M and M ′ we obtain, with the use of
Eqs. (3.97) and (3.99)

d
dt
ρK

Q (αJ) = −2πi νL gαJ Q ρK
Q (αJ)

+
∑

α!J!

∑

K!Q!

ρ
K

!
Q!
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for

quantization axis in
B direction
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NON-EQUILIBRIUM ATOMIC PHYSICS 511

The atom is interacting with an anisotropic, polarized radiation field character-
ized, for any given direction !Ω and any frequency ν, by the Stokes vector Ii(ν, !Ω).1
It is also interacting with a collection of perturbers (or colliders) whose veloc-
ity distribution is assumed to be isotropic and Maxwellian, and which produce
elastic, inelastic, and superelastic collisions (see Sect. 7.13). A magnetic field is
present, with associated Larmor frequency νL (see Eq. (3.10)) and direction !ΩB.
We adopt the flat-spectrum approximation by assuming that the radiation field has
no spectral structure across a frequency interval ∆ν centered at the frequency ν0
(corresponding to the energy separation between the two levels) and larger both
than νL and than the width (in frequency units) of the levels.

We fix a reference system having the z-axis in the magnetic field direction, and
we describe the atom by the multipole moments of the density matrix. Collecting
the results on the radiative and collisional rates derived in Chap. 7 (see Eqs. (7.11)
and (7.101), and the discussion in Sects. 7.13d and 7.13e), one gets for the time
evolution of the multipole moments of the upper level

d
dt
ρK

Q (αuJu) = −2πi νL gα
u

J
u

Q ρK
Q (αuJu)

+
∑

K′Q′

TA(αuJuKQ,α"J"K
′Q′) ρK′

Q′ (α"J")

−
∑

K′Q′

[
RE(αuJuKQK ′Q′) + RS(αuJuKQK ′Q′)

]
ρK′

Q′ (αuJu)

+

√
2J" + 1
2Ju + 1

C(K)
I (αuJu,α"J") ρ

K
Q (α"J")

−
[
C(0)

S (α"J",αuJu) + D(K)(αuJu)
]
ρK

Q (αuJu) , (10.1)

and for the lower level
d
dt
ρK

Q (α"J") = −2πi νL gα!J!
Q ρK

Q (α"J")

+
∑

K′Q′

[
TE(α"J"KQ,αuJuK ′Q′) + TS(α"J"KQ,αuJuK ′Q′)

]
ρK′

Q′ (αuJu)

−
∑

K′Q′

RA(α"J"KQK ′Q′) ρK′

Q′ (α"J")

+

√
2Ju + 1
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C(K)
S (α"J",αuJu) ρK

Q (αuJu)

−
[
C(0)

I (αuJu,α"J") + D(K)(α"J")
]
ρK

Q (α"J") . (10.2)

total (orbital + spin) angular momentum quantum number of the electronic cloud, while α is a
collection of inner quantum numbers (see Sect. 3.1).
1 Throughout this chapter the Stokes vector will be denoted by the symbol Ii (with i = 0, 1, 2, 3)
rather than Si used in preceding chapters.
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for
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The atom is interacting with an anisotropic, polarized radiation field character-
ized, for any given direction !Ω and any frequency ν, by the Stokes vector Ii(ν, !Ω).1
It is also interacting with a collection of perturbers (or colliders) whose veloc-
ity distribution is assumed to be isotropic and Maxwellian, and which produce
elastic, inelastic, and superelastic collisions (see Sect. 7.13). A magnetic field is
present, with associated Larmor frequency νL (see Eq. (3.10)) and direction !ΩB.
We adopt the flat-spectrum approximation by assuming that the radiation field has
no spectral structure across a frequency interval ∆ν centered at the frequency ν0
(corresponding to the energy separation between the two levels) and larger both
than νL and than the width (in frequency units) of the levels.

We fix a reference system having the z-axis in the magnetic field direction, and
we describe the atom by the multipole moments of the density matrix. Collecting
the results on the radiative and collisional rates derived in Chap. 7 (see Eqs. (7.11)
and (7.101), and the discussion in Sects. 7.13d and 7.13e), one gets for the time
evolution of the multipole moments of the upper level

d
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+
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[
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]
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−
[
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S (α"J",αuJu) + D(K)(αuJu)
]
ρK

Q (αuJu) , (10.1)

and for the lower level
d
dt
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Q (α"J") = −2πi νL gα!J!
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+
∑
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[
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]
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−
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total (orbital + spin) angular momentum quantum number of the electronic cloud, while α is a
collection of inner quantum numbers (see Sect. 3.1).
1 Throughout this chapter the Stokes vector will be denoted by the symbol Ii (with i = 0, 1, 2, 3)
rather than Si used in preceding chapters.
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for
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RA(αJKQK ′Q′) = (2J + 1)
∑

αuJu

B(αJ → αuJu)

×
∑

KrQr

√
3(2K + 1)(2K ′ + 1)(2Kr + 1)

× (−1)1+J
u
−J+Kr+Q′

{
K K ′ Kr
J J J

}{
1 1 Kr
J J Ju

}(
K K ′ Kr
Q −Q′ Qr

)

× ζ+ J
Kr
Qr

(ναuJu, αJ) (7.14d)

RE(αJKQK ′Q′) = δKK′ δQQ′

∑

α
!
J

!

A(αJ → α"J") (7.14e)

RS(αJKQK ′Q′) = (2J + 1)
∑

α
!
J

!

B(αJ → α"J")

×
∑

KrQr

√
3(2K + 1)(2K ′ + 1)(2Kr + 1)

× (−1)1+J
!
−J+Q′

{
K K ′ Kr
J J J

}{
1 1 Kr
J J J"

}(
K K ′ Kr
Q −Q′ Qr

)

× ζ+ J
Kr
Qr

(ναJ, α!J!
) , (7.14f)

where1

ζ+ =
1
2

[
1 + (−1)K+K′+Kr

]
.

The equations above were first deduced by Bommier and Sahal-Bréchot (1978).
Bommier (1977) had formerly derived the corresponding equations in the standard
representation.

7.2.b Radiative Transfer Coefficients

The radiative transfer coefficients can be easily expressed in the spherical statistical
tensor representation. Using again Eq. (3.99) and writing Tqq′(i, %Ω) in terms of the
irreducible spherical tensor T K

Q (i, %Ω) via Eq. (5.156), we obtain from Eqs. (7.10)

ηA
i (ν, %Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2J" + 1)B(α"J" → αuJu)

×
∑

KQK!Q!

√
3(2K + 1)(2K" + 1) ×

1 Note that the quantity ζ+ is 1 or 0 according as the integer (K + K ′ + Kr) is even or odd,
respectively.
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TA(αJKQ,α!J!K!Q!) = (2J! + 1)B(α!J! → αJ)

×
∑

KrQr

√
3(2K + 1)(2K! + 1)(2Kr + 1)

×
∑

MM ′M
!
M ′

!
qq′

(−1)1+J−J!+Q!

(
J J K
M −M ′ −Q

)(
J! J! K!
M! −M ′

! −Q!

)

×
(

J J! 1
−M M! −q

)(
J J! 1

−M ′ M ′
! −q′

)(
1 1 Kr
q −q′ −Qr

)

× J
Kr
Qr

(ναJ, α!J!
) .

The sum of the product of the five 3-j symbols can be evaluated via Eq. (2.52).
After some manipulations similar to those of App. 2 we obtain1

TA(αJKQ,α!J!K!Q!) = (2J! + 1)B(α!J! → αJ)

×
∑

KrQr

√
3(2K + 1)(2K! + 1)(2Kr + 1)

× (−1)K!+Q!






J J! 1
J J! 1
K K! Kr






(
K K! Kr
−Q Q! −Qr

)
J

Kr
Qr

(ναJ, α!J!
) . (7.14a)

With analogous procedures involving the use of Eq. (2.34) for TE, Eq. (2.52) for
TS, Eq. (2.23a) for RE, and Eq. (2.42) – applied twice – for RA and RS, we get

TE(αJKQ,αuJuKuQu) = δKKu
δQQu

(2Ju + 1)A(αuJu → αJ)

× (−1)1+J+Ju+K

{
Ju Ju K
J J 1

}
(7.14b)

TS(αJKQ,αuJuKuQu) = (2Ju + 1)B(αuJu → αJ)

×
∑

KrQr

√
3(2K + 1)(2Ku + 1)(2Kr + 1)

× (−1)Kr+Ku+Qu






J Ju 1
J Ju 1
K Ku Kr






(
K Ku Kr
−Q Qu −Qr

)
J

Kr
Qr

(να
u

J
u

, αJ) (7.14c)

1 Note that the sign factor appearing in this formula, (−1)K!+Q! , can be written in various
different ways. As Q! is an integer, we can also write (−1)K!−Q! . As the 9-j symbol is zero unless
(K + K! + Kr) is an even integer (because of the symmetry properties following Eq. (2.48)), the
sign factor can also be written (−1)K+Kr+Q! ; etc.

TA

0 0

0
0
0

0 0

0

Kr = K, Qr = -Q

ρKQ (αuJu) =
TA(αuJuKQ,α!J! 0 0)

2πiνLgαuJuQ+A(αuJu → α!J!)
× ρ00(α!J!)

radiation !eld tensor

only this
 term remains
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We can easily construct the associated irreducible tensors through the standard
procedure (see Eq. (5.124)). By so doing, the following irreducible tensors are
obtained

EK
Q (α,β, #Ω), T K

Q (i, #Ω), IK
Q (ν, #Ω), JK

Q (ν)

corresponding to

Eqq′(α,β, #Ω), Tqq′ (i, #Ω), Iqq′ (ν, #Ω), Jqq′ (ν) ,

respectively. The relations between the irreducible tensors and the corresponding
reducible ones are repeated here for the sake of completeness

T K
Q =

∑

qq′

(−1)1+q
√

3(2K + 1)
(

1 1 K
q −q′ −Q

)
Tqq′ , (5.155)

with the inverse transformation

Tqq′ =
∑

KQ

(−1)1+q

√
2K + 1

3

(
1 1 K
q −q′ −Q

)
T K

Q . (5.156)

Obviously, the various irreducible tensors are connected with each other by the
same relations which connect the corresponding reducible tensors, namely (cf.
Eqs. (5.131), (5.150), and (5.153))

T K
Q (i, #Ω) =

∑

αβ=±1

1
2

(σ̂i)αβ EK
Q (β,α, #Ω)

IK
Q (ν, #Ω) =

∑

αβ=±1

EK
Q (α,β, #Ω) Iβα(ν, #Ω) =

3∑

i=0

T K
Q (i, #Ω)Si(ν, #Ω)

JK
Q (ν) =

∮
dΩ
4π

IK
Q (ν, #Ω) =

∮
dΩ
4π

3∑

i=0

T K
Q (i, #Ω)Si(ν, #Ω) . (5.157)

Their conjugation properties can be deduced from the corresponding properties of
the reducible tensors, and are found to be

EK
Q (α,β, #Ω)∗ = (−1)Q EK

−Q(β,α, #Ω)

T K
Q (i, #Ω)∗ = (−1)Q T K

−Q(i, #Ω)

IK
Q (ν, #Ω)∗ = (−1)Q IK

−Q(ν, #Ω)

JK
Q (ν)∗ = (−1)Q JK

−Q(ν) . (5.158)

We rewrite here, for the sake of clarity, the expressions of the tensors EK
Q (α,β, #Ω)

and T K
Q (i, #Ω) in terms of rotation matrices (see Eqs. (5.126), (5.134), and (5.135))

EK
Q (α,β, #Ω) =

√
3(2K + 1)

(
1 1 K
α −β −Q′

)
DK

Q′Q(R) (α,β = ±1) ;

T K
Q (i, #Ω) =

∑

P

tKP (i) DK
PQ(R) (5.159)
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TABLE 5.7

Explicit expression for the tensor IK
Q (ν, "Ω). The components with negative Q-value can be

obtained from the relation IK
−Q(ν, "Ω) = (−1)Q IK

Q (ν, "Ω)∗.

I0
0 (ν, "Ω) = I(ν, "Ω)

I1
0 (ν, "Ω) =

√
3
2 cos θ V (ν, "Ω)

I1
1 (ν, "Ω) = −

√
3

2 sin θ V (ν, "Ω) eiχ

I2
0 (ν, "Ω) = 1

2
√

2

[
(3 cos2θ − 1) I(ν, "Ω) − 3 sin2θ Q̃(ν, "Ω)

]

I2
1 (ν, "Ω) = −

√
3

2 sin θ
[
cos θ I(ν, "Ω) + cos θ Q̃(ν, "Ω) + i Ũ(ν, "Ω)

]
eiχ

I2
2 (ν, "Ω) =

√
3

4

[
sin2θ I(ν, "Ω) − (1 + cos2θ) Q̃(ν, "Ω) − 2i cos θ Ũ(ν, "Ω)

]
e2iχ

where Q̃(ν, "Ω) = cos 2γ Q(ν, "Ω) − sin 2γ U(ν, "Ω)

Ũ(ν, "Ω) = cos 2γ U(ν, "Ω) + sin 2γ Q(ν, "Ω)

The derivation of the explicit expression for the tensor IK
Q (ν, "Ω) defined in Eq.

(5.157) is straightforward (see Table 5.7). Note that the expressions in Table 5.7
– like those of Table 5.4 – contain only the linear combinations Q̃ and Ũ , which
are independent of the reference direction chosen to define the Stokes parameters
Q and U .

Finally, the irreducible tensor of the radiation field JK
Q (ν) is obtained by averag-

ing IK
Q (ν, "Ω) over the solid angle. In the particular case of an unpolarized radiation

field having cylindrical symmetry about the z-axis only two components are not
zero, namely

J0
0 (ν) =

∮
dΩ
4π

I(ν, θ)

J2
0 (ν) =

1
2
√

2

∮
dΩ
4π

(3 cos2θ − 1) I(ν, θ) . (5.164)

Obviously, the component J2
0 (ν) is also zero if the radiation field is isotropic.

5.12. Further Properties of the Scattering Phase Matrix

The expression given in Sect. 5.10 for the scattering phase matrix and the various
relations proved in Sect. 5.11 allow a further extension of the remarkable properties
of this matrix.

Starting from Eq. (5.133) and using Eq. (5.163) one can directly prove the fol-
lowing relations (which are however valid only when the same reference directions

z
Ω

θ

Stokes parameters

geometrical factors

for unpolarized radiation having z-axis symmetry

(= 0  for isotropic !led)
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10.3. The Two-Level Atom: the Hanle Effect
(unpolarized lower level - no collisions)

The basic characteristics of the Hanle effect are obtained from Eq. (10.8) by retain-
ing the ‘magnetic’ term (first term in the denominator, which was set to zero in
the preceding section).1 In order to further simplify our treatment, we still neglect
– as in the preceding section – the effects of collisions (this matter is deferred until
Sect. 10.6). Using Eqs. (10.9) and (10.11), we can rewrite Eq. (10.8) in the form

ρK
Q (αuJu) =

√
2J! + 1
2Ju + 1

B(α!J! → αuJu)
A(αuJu → α!J!) + 2πi νL gα

u
J
u

Q

× w(K)
J
u

J
!

(−1)Q JK
−Q(ν0) ρ

0
0(α!J!) . (10.27)

We recall that the statistical tensors are defined in a reference system having the
z-axis in the magnetic field direction. Comparison with the corresponding expres-
sion obtained for the non-magnetic regime (Eq. (10.13)) shows that the effect of the
magnetic field is to reduce and dephase, via the imaginary term in the denominator,
all the multipole moments with Q $= 0. The efficiency of this relaxation process is
controlled by the dimensionless parameter Hu defined by

Hu =
2πνL gαuJu

A(αuJu → α!J!)
. (10.28)

This parameter is the quantum-mechanical analogue of the parameter H introduced
in the classical derivation of the Hanle effect (see Eq. (5.84)).2 Numerically, one
has (cf. Eq. (5.85))

Hu =
0.879 gα

u
J
u

B

A(αuJu → α!J!)
, (10.29)

where B is in G and A(αuJu → α!J!) in 107 s−1.
Using Hu, Eq. (10.27) can be expressed in the form

ρK
Q (αuJu) =

1
1 + i QHu

[
ρK

Q (αuJu)
]

B=0
, (10.30)

where [ρK
Q (αuJu)]B=0 are the multipole moments for the non-magnetic case (in

the presence of the same radiation field and defined in the same reference sys-
tem). Equation (10.30) summarizes the ‘essence’ of the Hanle effect. It shows
that coherences with Q = 0 (those connected with the populations of the Zeeman
sublevels, see Eq. (3.101)) are unaffected by the magnetic field, while those with

1 Note that we are still using the unpolarized lower level assumption and we are neglecting,
accordingly, stimulated emission effects.
2 The classical damping constant γ, defined in Eq. (5.28), has its obvious quantum-mechanical
counterpart in the Einstein coefficient A.
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Eq. (3.101)).
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ρK
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√

2J!+1
2Ju+1 C(0)

I (αuJu,α!J!) δK0 δQ0

2πi νL gα
u

J
u

Q + A(αuJu → α!J!) + C(0)
S (α!J!,αuJu) + D(K)(αuJu)

× ρ0
0(α!J!) , (10.8)
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TA(αuJuKQ,α!J! 0 0) =
√

3(2J! + 1) B(α!J! → αuJu)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) . (10.9)

In the following we will apply Eq. (10.8) to different physical regimes, characterized
by the relative order of magnitude of the different parameters.

10.2. The Two-Level Atom: Resonance Polarization
(unpolarized lower level - no magnetic field - no collisions)
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the effect of the magnetic field and the effect of collisions. Setting in Eq. (10.8)

νL = C(0)
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S (α!J!,αuJu) = D(K)(αuJu) = 0 ,
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ρK
Q (αuJu) =

√
3(2J! + 1)

B(α!J! → αuJu)
A(αuJu → α!J!)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) ρ

0
0(α!J!) . (10.10)

It is convenient to introduce the symbol w(K)
J
u

J
!

defined by2

w(K)
JuJ!

= (−1)1+J!+Ju

√
3(2Ju + 1)

{
1 1 K
Ju Ju J!

}
, (10.11)

1 Note that Eq. (10.10) is valid in an arbitrary reference system, since the magnetic field is
zero.
2 The symbol was first introduced by Landi Degl’Innocenti (1984).
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where [ρK
Q (αuJu)]B=0 are the multipole moments for the non-magnetic case (in

the presence of the same radiation field and defined in the same reference sys-
tem). Equation (10.30) summarizes the ‘essence’ of the Hanle effect. It shows
that coherences with Q = 0 (those connected with the populations of the Zeeman
sublevels, see Eq. (3.101)) are unaffected by the magnetic field, while those with

1 Note that we are still using the unpolarized lower level assumption and we are neglecting,
accordingly, stimulated emission effects.
2 The classical damping constant γ, defined in Eq. (5.28), has its obvious quantum-mechanical
counterpart in the Einstein coefficient A.

ρKQ (αuJu) = e−iα cosα
[
ρKQ (αuJu)

]
B=0

( )

cosα =

√
1

1 +Q2H2
u

tan−1 QHu ( ) =
�
�
� −

�
�
�

e.g.
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Q != 0 are reduced, with respect to the non-magnetic case, by a factor
√

1 + Q2H2
u .

The magnetic field has the additional effect of introducing a phase factor, given
by arctan(QHu), in the latter. Such conclusions were anticipated in Sect. 5.13
where an intuitive description of the Hanle effect, based on classical physics, was
presented.

The radiation emitted by the atom along a given direction is obtained by substi-
tution of Eq. (10.27) into Eq. (7.15e) – adapted to the case of our two-level atom.
The resulting expression is quite involved, and will be studied in detail in the next
section. Here we disregard the spectral details of the emitted radiation, and we
restrict attention to the frequency-integrated emission coefficient, defined by

ε̃i("Ω) =
∫

∆ν

εi(ν, "Ω) dν ,

where the interval ∆ν is sufficiently broad to fully cover all the Zeeman components
of the line. Taking into account that all the profiles Φ(να

u
J
u
M

u
, α

!
J

!
M

!
− ν) are

normalized to unity in frequency (see Eqs. (6.59a-c)), we obtain, along the same
lines leading from Eq. (7.15e) to Eq. (7.16e)

ε̃i("Ω) =
h2ν4

2πc2
N (2Ju + 1)B(αuJu → α$J$)

×
∑

KQ

√
3 (−1)1+J!+Ju

{
1 1 K
Ju Ju J$

}
T K

Q (i, "Ω) ρK
Q (αuJu) ,

or, with the use of Eqs. (7.8) and (10.11)

ε̃i("Ω) =
hν

4π
N
√

2Ju + 1 A(αuJu → α$J$)
∑

KQ

w(K)
JuJ!

T K
Q (i, "Ω) ρK

Q (αuJu) . (10.31)

Substitution of Eq. (10.27) into Eq. (10.31) yields, with the help of Eqs. (5.157),
(9.5), (10.6), (10.17) and (10.28)

ε̃i("Ω) = kA
L

∮
dΩ′

4π

3∑

j=0

Pij("Ω, "Ω′; "B) Ij(ν0, "Ω
′) , (10.32)

where Pij("Ω, "Ω′; "B), the quantum-mechanical scattering phase matrix in the pres-
ence of a magnetic field, is given by1

Pij("Ω, "Ω′; "B) =
∑

KQ

WK(J$, Ju) (−1)Q T K
Q (i, "Ω) T K

−Q(j, "Ω′)
1

1 + i QHu

. (10.33)

1 The expression in Eq. (10.33) was first derived by Landi Degl’Innocenti (1985c).
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1 The expression in Eq. (10.33) was first derived by Landi Degl’Innocenti (1985c).
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h2ν4

2πc2
N (2Ju + 1)B(αuJu → α$J$)

×
∑

KQ

√
3 (−1)1+J!+Ju

{
1 1 K
Ju Ju J$

}
T K

Q (i, "Ω) ρK
Q (αuJu) ,

or, with the use of Eqs. (7.8) and (10.11)

ε̃i("Ω) =
hν

4π
N
√

2Ju + 1 A(αuJu → α$J$)
∑

KQ

w(K)
JuJ!

T K
Q (i, "Ω) ρK

Q (αuJu) . (10.31)

Substitution of Eq. (10.27) into Eq. (10.31) yields, with the help of Eqs. (5.157),
(9.5), (10.6), (10.17) and (10.28)

ε̃i("Ω) = kA
L

∮
dΩ′

4π

3∑

j=0

Pij("Ω, "Ω′; "B) Ij(ν0, "Ω
′) , (10.32)

where Pij("Ω, "Ω′; "B), the quantum-mechanical scattering phase matrix in the pres-
ence of a magnetic field, is given by1

Pij("Ω, "Ω′; "B) =
∑

KQ

WK(J$, Ju) (−1)Q T K
Q (i, "Ω) T K

−Q(j, "Ω′)
1

1 + i QHu

. (10.33)

1 The expression in Eq. (10.33) was first derived by Landi Degl’Innocenti (1985c).

frequency-integrated
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Fig.10.2. Polarization (or Hanle) diagram for the transition (J! = 1, Ju = 2), relative to the scat-
tering process illustrated in Fig.5.11. Full lines correspond to β = const., dashed lines to constant
magnetic field strength, parameterized through the angle α2 (see Eqs.(10.28) and (10.38)). Note
the scale difference from the classical Hanle diagram of Fig.5.12.

coincide for the transition (J! = 0, Ju = 1) with gα
u
J
u

= 1 (see Table 10.1 and
footnote 2 on p. 520).

In order to illustrate the Hanle effect in a specific case, let us consider the scat-
tering geometry of Fig. 5.11. The polarization of the scattered radiation is given
by Eq. (10.32) with the phase matrix of Eq. (10.34). The multipole components
R(K)

ij (!Ω, !Ω′; !B) are given by Eqs. (5.139).1 The resulting fractional (frequency-
integrated) linear polarization is found to be

p̃Q ≡
ε̃Q(!Ω)

ε̃I(!Ω)
=

3 W2

[
sin2β + (1 + cos2β) cos2α2

]

8 + W2 (1 − 3 cos2β − 3 sin2β cos2α2)

p̃U ≡ ε̃U (!Ω)
ε̃I(!Ω)

=
6 W2 cosβ sinα2 cosα2

8 + W2 (1 − 3 cos2β − 3 sin2β cos2α2)
, (10.37)

where
tanα2 = 2Hu . (10.38)

Figure 10.2 shows the polarization diagram predicted by Eqs. (10.37) for the tran-
sition (J! = 1, Ju = 2), which has a W2 value of 0.35 (see Table 10.1). Note that

1 Note that the scattering geometry of Fig. 5.11 is a special case of the geometry of Fig. 5.10
(which is implied by Eqs. (5.139)) corresponding to µ = cos β, µ′ = 0, χ − χ′ = 90◦. The values
of µ, µ′, C1, S1, C2, S2 are given by Eqs. (5.97) and (5.98) – in the latter, H is replaced by Hu.
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×
∑

M!M ′
!Muqq′

(−1)1+J!−M!+q′
(

Ju J! 1
−Mu M! −q

)(
Ju J! 1

−Mu M ′
! −q′

)

×
(

1 1 K
q −q′ −Q

)(
J! J! K!
M! −M ′

! −Q!

)

× Re
[
T K

Q (i, !Ω) ρK!
Q

!
(α!J!) Φ(να

u
J
u

M
u

, α
!
J

!
M

!
− ν)
]

(7.15a)

ηS
i (ν, !Ω) =

hν

4π
N
∑

α
!
J

!

∑

α
u

J
u

(2Ju + 1)B(αuJu → α!J!)

×
∑

KQK
u

Q
u

√
3(2K + 1)(2Ku + 1)

×
∑

MuM ′
uM!qq′

(−1)1+J
u
−M

u
+q′
(

Ju J! 1
−Mu M! −q

)(
Ju J! 1

−M ′
u M! −q′

)

×
(

1 1 K
q −q′ −Q

)(
Ju Ju Ku
M ′

u −Mu −Qu

)

× Re
[
T K

Q (i, !Ω) ρKu
Q

u
(αuJu) Φ(να

u
J
u

M
u

, α
!
J

!
M

!
− ν)
]

(7.15b)

ρA
i (ν, !Ω) = ηA

i (ν, !Ω)
{
Re → Im

}
(7.15c)

ρS
i (ν, !Ω) = ηS

i (ν, !Ω)
{
Re → Im

}
(7.15d)

εi(ν, !Ω) =
2hν3

c2
ηS

i (ν, !Ω) . (7.15e)

These expressions simplify considerably when the dependence of the Φ profiles on
the magnetic quantum numbers can be neglected. This occurs, for instance, when
the line width is much larger than the Zeeman splitting (the physical regimes Ia
and IIa of the classification scheme presented in Sect. 5.16), or when low-resolution
observations of the radiation emitted by a thin plasma are to be interpreted. Sub-
stituting in Eqs. (7.15)

Φ(ναuJuMu, α!J!M!
− ν) → Φ(ναuJu, α!J!

− ν) ,

the summations over the magnetic quantum numbers can be carried out using
Eq. (2.34). Taking also into account that the quantity

∑
Q T K

Q (i, !Ω) ρK
Q (αJ) is

real – as apparent from the conjugation properties (3.102) and (5.158) – one gets

ηA
i (ν, !Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2J! + 1)B(α!J! → αuJu) ×
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and transform the summation over the various modes of the radiation field into a
double integral via Eq. (4.35), we obtain

−4π2

h2
Tr
{ t∫

0

[[
ÔI(t), B(t)

]
, B†(t′)

]
ρI(t

′) dt′
}

=

= −16 π4

h2c

∑

λλ′

∑

nm′′

ρm′′m′

∮
dΩ
4π

∞∫

0

dν
[
$d · $eλ($Ω)

]
mn

[
$d · $eλ′($Ω)∗

]
nm′′

×
[
Iλ′λ(ν, $Ω) +

hν3

c2
δλλ′

]
Φ(νm′n − ν)

+ (other terms) . (6.58)

This procedure can however be criticized from several points of view. First of
all, by assuming ρm′′m′(t′) to be independent of t′, we give up the possibility of
describing those aspects of the phenomena which depend on the ‘history’ of the
density-matrix elements. This is the so-called secular approximation (cf. Cohen-
Tannoudji et al., 1988), a special case of the Markov approximation, which makes
impossible the treatment of correlation effects in successive interactions, e.g., fre-
quency redistribution effects in the absorption and re-emission process.

Furthermore, we should realize that the exact time evolution of the density-
matrix element ρmm′ is affected by several complicated phenomena that cannot be
accounted for by our approach, which is based on a lowest-order expansion in the
framework of Quantum Electrodynamics: the finite width of energy levels, their
energy shift due to interactions with real and virtual photons, and – when the
levels m and m′ are non-degenerate – the so-called quantum beats. The last phe-
nomenon consists in oscillations of ρmm′ whose frequencies depend on the spectral
characteristics of the incident radiation.

The first two phenomena (finite width and shift of the energy levels) can be
taken into account, in a phenomenological way, by replacing the complex profile of
Eq. (6.57) with the following

Φ(νab − ν) = φ(νab − ν) + i ψ(νab − ν)

=
1
π

Γab

Γ 2
ab + (νab +∆ab − ν)2

+
i
π

νab +∆ab − ν

Γ 2
ab + (νab +∆ab − ν)2

, (6.59a)

where
Γab =

γab

4π
=
γa + γb

4π
, ∆ab = ∆a −∆b , (6.59b)

with γa, γb the probabilities per unit time that the atom leaves level | a or | b ,
respectively, via spontaneous or stimulated transitions, and ∆a, ∆b the frequency
shifts of the two levels. Note that the real part of the profile satisfies the normal-
ization

∞∫

−∞

φ(νab − ν) dν = 1 . (6.59c)

detailed line pro!le
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the diagram is quite similar to the classical Hanle diagram shown in Fig. 5.12 (cf.
Eqs. (5.102)), apart from a scale factor due to the smaller polarizing efficiency of
the transition (the maximum fractional polarization, corresponding to zero mag-
netic field, is 21/73 ! 0.288 – see Table 10.2 – instead of 1). The shape of the Hanle
diagrams can be appropriately characterized by the relative height, r, of the ‘cen-
ter’ of the diagram (defined as the point corresponding to α2 = 90◦, β = 90◦). The
parameter r is just the ratio of the scattered polarization for infinitely large mag-
netic field to the polarization for zero field, in the 90◦ scattering of an unpolarized
beam with the magnetic field perpendicular to the scattering plane,

r =
p̃Q(α2 = 90◦,β = 90◦)

p̃Q(α2 = 0◦)
.

From Eqs. (10.37) we have

r =
4 − W2

8 + W2

,

thus r varies from 1/3 for W2 = 1 to 1/2 for W2 → 0 (minimum polarizing effi-
ciency). For the transition (J! = 1, Ju = 2) we get r ! 0.437.

10.4. The Two-Level Atom: Spectral Details of the Hanle Effect
(unpolarized lower level - no collisions)

In this section we analyze in some detail the frequency dependence of the emitted
radiation in the Hanle effect. It is important to recall that the results presented
in the following are valid under the flat-spectrum approximation for the incident
radiation field. As in the preceding section, we assume that the lower level is
unpolarized and we neglect collisions.

The emission coefficient in the four Stokes parameters, as a function of frequency,
is obtained by substitution of Eq. (10.27) into Eq. (7.15e). Before performing the
substitution, it is convenient to rewrite the latter in the form

εi(ν, %Ω) =
hν

4π
N
√

2Ju + 1 A(αuJu → α!J!)

×
∑

KK′Q

T K′

Q (i, %Ω) ρK
Q (αuJu) ΦKK′

Q (J!, Ju; ν) , (10.39)

where the generalized profile ΦKK′

Q (J!, Ju; ν) is given by1

1 The symbol was introduced by Landi Degl’Innocenti et al. (1991).
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ΦKK′

Q (J!, Ju; ν) =
√

3(2Ju + 1)(2K + 1)(2K ′ + 1)

×
∑

M
u

M ′
u

M
!
qq′

(−1)1+Ju−Mu+ q′
(

Ju J! 1
−Mu M! −q

)(
Ju J! 1

−M ′
u M! −q′

)

×
(

Ju Ju K
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u −Mu −Q

)(
1 1 K ′

q −q′ −Q

)

× 1
2

[
Φ(να

u
J
u

M
u

, α
!
J

!
M

!
− ν) + Φ(να

u
J
u

M ′
u

, α
!
J

!
M

!
− ν)∗

]
. (10.40)

Equation (10.39) shows that the generalized profile is a frequency-dependent cou-
pling coefficient connecting the (K, Q) multipole moment of the atomic density
matrix with the (K ′, Q) multipole component of the emitted radiation. Its main
properties, including the proof of Eq. (10.39), are given in App. 13.

Substitution of Eq. (10.27) into Eq. (10.39) yields, with the help of Eqs. (5.157),
(9.5), (10.6) and (10.28)

εi(ν, $Ω) = kA
L

∑

KK′Q

ΦKK′

Q (J!, Ju; ν)

×
∮

dΩ′

4π

3∑

j=0

w(K)
JuJ!

(−1)Q T K′

Q (i, $Ω) T K
−Q(j, $Ω′)

1
1 + i QHu

Ij(ν0, $Ω
′) . (10.41)

Obviously, Eq. (10.41) reduces to Eq. (10.32) after integration over frequency (see
Eqs. (A13.3) and (10.17)).

A remarkable result can be deduced from Eq. (10.41): provided the width of
the lower level is much smaller than the width of the upper level (which requires a
sufficiently weak incident radiation field), the Hanle effect vanishes in the far wings
of the line. In other words, resonance scattering in the line wings is unaffected by
the presence of the magnetic field.

To prove this property, we go back to Eq. (6.59a). Neglecting frequency shifts,
we can write

Φ(να
u

J
u

M
u

, α
!
J

!
M

!
− ν) =

1
π

1
Γ − i (να

u
J
u

M
u

, α
!
J

!
M

!
− ν)

,

where (see Eq. (7.3))

ναuJuMu, α!J!M!
= ν0 + νL (gαuJu

Mu − gα!J!
M!) .

It follows that
1
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− ν)
] . (10.42)
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sufficiently weak incident radiation field), the Hanle effect vanishes in the far wings
of the line. In other words, resonance scattering in the line wings is unaffected by
the presence of the magnetic field.

To prove this property, we go back to Eq. (6.59a). Neglecting frequency shifts,
we can write

Φ(να
u

J
u

M
u

, α
!
J

!
M

!
− ν) =

1
π

1
Γ − i (να

u
J
u

M
u

, α
!
J

!
M

!
− ν)

,

where (see Eq. (7.3))

ναuJuMu, α!J!M!
= ν0 + νL (gαuJu

Mu − gα!J!
M!) .

It follows that
1
2

[
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u
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u
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u
, α

!
J

!
M

!
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u

M ′
u

, α
!
J

!
M

!
− ν)∗

]
=

=
1
2π

2Γ + i νL gα
u
J
u
(M ′

u − Mu)
[
Γ − i (να

u
J
u

M
u

, α
!
J

!
M

!
− ν)
][
Γ + i (να

u
J
u

M ′
u

, α
!
J

!
M

!
− ν)
] . (10.42)

• substitution of                    gives ( )

generalized pro!le
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• Jℓ = 0, Ju = 1 and β = 0°
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Fig.10.3. The emission coefficients of Eqs.(10.44), normalized to (3/8) kA
L∆Ω′ I′, are plotted

in units of 108 s−1 against the ‘reduced’ frequency (ν0 − ν)/Γ . The relevant parameters are:
A(αuJu → α!J!) = 5 × 107 s−1, Hu = 1 (hence Γ = 3.98 × 106 s−1, B = 5.69G). The dashed
lines represent the values obtained from frequency-integrated observations. Note that the full
frequency range corresponds to 1mÅ for a line at 5000 Å.

After some algebra we obtain, with the help of Eqs. (A13.11) and Table 10.1

ε0(ν, #Ω) =
3
8

kA
L ∆Ω′ I ′

[
φ−1 + φ1

]

ε1(ν, #Ω) =
3
8

kA
L ∆Ω′ I ′

[
1

1 + 4H2
u

(φ−1 + φ1) −
2Hu

1 + 4H2
u

(ψ−1 − ψ1)
]

ε2(ν, #Ω) =
3
8

kA
L ∆Ω′ I ′

[
2Hu

1 + 4H2
u

(φ−1 + φ1) +
1

1 + 4H2
u

(ψ−1 − ψ1)
]

ε3(ν, #Ω) = −3
8

kA
L ∆Ω′ I ′

[
φ−1 − φ1

]
, (10.44)

where the profiles φ−1, φ1, ψ−1, ψ1 are defined in Eqs. (A13.10).
The emission coefficients in the four Stokes parameters predicted by Eqs. (10.44)

are shown in Fig. 10.3. One can note the presence of circular polarization – due

APPENDIX 833

k) Special case J! = 0, Ju = 1
Evaluating the relevant 3-j symbols via Eqs. (2.26), and introducing the compact
notation (consistent with Eqs. (9.6) and (9.8))

Φq = φq + iψq = Φ(να
u
1−q, α

!
00 − ν) (q = −1, 0, +1) , (A13.10)

one obtains from Eq. (A13.1)

Φ00
0 =

1
3
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φ1 + φ0 + φ−1
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Φ01
0 = −Φ10
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1√
6
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0 = Φ20

0 =
1

3
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]
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4
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]
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4
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]

Φ22
0 =
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6
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]
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1 =

1
4

[
φ1 + iψ1 + 2φ0 + φ−1 − iψ−1

]

Φ22
2 =

1
2

[
φ1 + iψ1 + φ−1 − iψ−1

]
. (A13.11)

The generalized profiles with negative Q are obtained from the expressions above
via the conjugation property (A13.2).

As shown above – points i) and j) – the generalized profile ΦKK′

Q (J!, Ju; ν) is useful
to express the frequency dependence of the emission and absorption coefficients for
the two-level atom in the presence of a magnetic field. Its direct counterpart, related
to the anomalous dispersion coefficients ρA

i (ν, &Ω) and ρS
i (ν, &Ω), is the generalized

dispersion profile ΨKK′

Q (J!, Ju; ν), which is defined by an expression strictly similar
to Eq. (A13.1)

iΨKK′
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M ′
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]
.
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Fig.10.3. The emission coefficients of Eqs.(10.44), normalized to (3/8) kA
L∆Ω′ I′, are plotted

in units of 108 s−1 against the ‘reduced’ frequency (ν0 − ν)/Γ . The relevant parameters are:
A(αuJu → α!J!) = 5 × 107 s−1, Hu = 1 (hence Γ = 3.98 × 106 s−1, B = 5.69G). The dashed
lines represent the values obtained from frequency-integrated observations. Note that the full
frequency range corresponds to 1mÅ for a line at 5000 Å.

After some algebra we obtain, with the help of Eqs. (A13.11) and Table 10.1

ε0(ν, #Ω) =
3
8

kA
L ∆Ω′ I ′

[
φ−1 + φ1

]

ε1(ν, #Ω) =
3
8

kA
L ∆Ω′ I ′

[
1

1 + 4H2
u

(φ−1 + φ1) −
2Hu

1 + 4H2
u

(ψ−1 − ψ1)
]

ε2(ν, #Ω) =
3
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L ∆Ω′ I ′

[
2Hu

1 + 4H2
u

(φ−1 + φ1) +
1

1 + 4H2
u

(ψ−1 − ψ1)
]

ε3(ν, #Ω) = −3
8

kA
L ∆Ω′ I ′

[
φ−1 − φ1

]
, (10.44)

where the profiles φ−1, φ1, ψ−1, ψ1 are defined in Eqs. (A13.10).
The emission coefficients in the four Stokes parameters predicted by Eqs. (10.44)

are shown in Fig. 10.3. One can note the presence of circular polarization – due

108 s-1

(ν0-ν)/Γ

A = 5 × 107 s-1

Hu = 1 (Γ = 3.98 × 106 s-1, B = 5.69 G)

frequency-
integrated case

due to
Zeeman effect

Hanle effect vanishes
in the far wings
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• radiation !eld tensors should be derived as 
solution of radiation transport equation

• collisional transitions should be taken into 
account: excitation, depolarization, . . .

• . . .

next problems
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