Line profile formation in a magnetic field

M. Goto, NIFS

intuitive understanding

- $J=0-1$ transition is considered
- density matrix for atoms under anisotropic irradiation
- emergence of coherence between magnetic sublevels by rotation of coordinates
- influence of magnetic field on density matrix
- derivation of Stokes parameters from density matrix

density matrix

- eigenstates of $J_{z},|M\rangle$, are considered and density matrix (operator) is expressed as

$$
\rho=\sum_{M} p_{M}|M\rangle\langle M|
$$

- isotropic case with $J=1$

$$
\begin{aligned}
\rho & =\frac{1}{3}\{|1\rangle\langle 1|+|0\rangle\langle 0|+|-1\rangle\langle-1|\} \\
& =\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- off diagonal components appear when there exists coherence between basis states

anisotropic photo-excitation

- unpolarized σ-light can be understood to involve incoherent two circularly polarized lights
- excitation gives rise to anisotropic excited state

$$
\underset{\sim}{ } \quad \rho=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)_{-1}^{+1}+\begin{array}{ccc}
+1
\end{array}
$$

- there is no coherence (non-diagonal component) for this moment
- consider a situation with a magnetic field in x-axis direction
- it would be useful to change the quantization axis from z - to x-axis
- density matrix is transformed in change of the quantization axis

change of quantization axis

- quantization axis change is realized by rotation of coordinates - Euler rotation

rotation operator (matrix)

- coordinates rotation is expressed as action of rotation operator $\mathscr{D}(R)$ to kets or bras
- density matrix elements are formally calculated as

$$
\begin{aligned}
\rho_{M N} & =\langle M| \rho|N\rangle \text { (quantization axis } \rightarrow z \text {-axis) } \\
\rho_{M_{x} N_{x}} & =\left\langle M_{x}\right| \rho\left|N_{x}\right\rangle \text { (quantization axis } \rightarrow x \text {-axis) } \\
& =\left(\langle M| \mathscr{D}^{\dagger}(R)\right) \rho(\mathscr{D}(R)|N\rangle) \\
& =\sum_{m n}\langle M| \mathscr{D}^{\dagger}(R) \frac{|m\rangle\langle m| \rho|n\rangle\langle n| \mathscr{D}(R)|N\rangle}{\pi} \text { closure } \\
& =\sum_{m n} \mathscr{D}_{m M}^{(J) *}(R) \mathscr{D}_{n N}^{(J)}(R)\langle m| \rho|n\rangle
\end{aligned}
$$

rotation operator (matrix)

rotation with respect to y-axis

$$
\begin{aligned}
& \langle M| \mathscr{D}(a, \beta, \gamma)|N\rangle=\mathscr{D}_{M N}^{(J)}(a, \beta, \gamma)=e^{-i(M a+N \gamma)} d_{M N}^{(J)}(\beta) \\
& d_{M N}^{(J)}(\beta)=\sum_{k}(-1)^{k-M+N} \frac{\sqrt{(J+M)!(J-M)!(J+N)!(J-N)!}}{(J+M-k)!k!(J-k-N)!(k-M+N)!} \\
& \quad \times\left(\cos \frac{\beta}{2}\right)^{2 J-2 k+M-N}\left(\sin \frac{\beta}{2}\right)^{2 k-M+N}
\end{aligned}
$$

Wigner's formula

$$
\rho_{z}=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \xrightarrow{\sim}
$$

- coherence emerges between $M=+1$ and $M=-1$ states
- no coherence appears in isotropic case

$$
\begin{array}{ll}
\rho_{z} & =\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\rho_{x} & =\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\hline
\end{array}
$$

role of magnetic field

- density matrix is derived as solution of equation of motion

$$
i \hbar \frac{\partial}{\partial t} \rho_{x}=\left[H_{F}, \rho_{x}\right]
$$

- Hamiltonian H_{F} consists of perturbation due to magnetic field

$$
\begin{aligned}
\langle M| H_{\mathrm{F}}|N\rangle & =-\mu_{\mathrm{B}} g_{\rho} B\langle M| J_{x}|N\rangle \\
& =-\mu_{\mathrm{B}} g_{\mathrm{J}} B M \delta_{M N} \\
& =-\hbar \omega_{0} M \delta_{M N}
\end{aligned}
$$

- μ_{B} and g_{\lrcorner}are Bohr magneton and Landé g-factor, respectively, and ω_{0} corresponds to Larmor angular frequency
- H_{F} is explicitly written as

$$
H_{\mathrm{F}}=-\hbar \omega_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

- right hand side of equation is
calculated as

equation of motion

$$
i \hbar \frac{\partial}{\partial t} \rho_{x}=\left[H_{F}, \rho_{x}\right]
$$

$i \hbar \frac{\partial}{\partial t}\left(\begin{array}{ccc}\rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1}\end{array}\right)=-\hbar \omega_{0}\left(\begin{array}{ccc}0 & \rho_{10} & 2 \rho_{1-1} \\ -\rho_{01} & 0 & \rho_{0-1} \\ -2 \rho_{-11} & -\rho_{-10} & 0\end{array}\right)$

- $\rho_{x}(t)$ is readily obtained with initial condition

$$
\rho_{x}(t)=\frac{1}{4}\left(\begin{array}{ccc}
1 & 0 & \mathrm{e}^{2 i \omega t} \\
0 & 2 & 0 \\
\mathrm{e}^{-2 i \omega t} & 0 & 1
\end{array}\right)
$$

- line intensity is derived from density matrix obtained

line intensity

$$
\begin{aligned}
& \left.{ }_{M_{M_{a}} M_{\beta}}^{q}=C_{D}\left|\left\langle a J_{a} M_{a}\right| d_{q}\right| \beta J_{\beta} M_{\beta}\right\rangle\left.\right|^{2} \\
& \left.I_{\alpha \beta}^{q}=C_{D} \sum_{M_{a}, M_{\beta}} w_{M_{a}}\left|\left\langle\alpha J_{\alpha} M_{\alpha}\right| d_{q}\right| \beta J_{\beta} M_{\beta}\right\rangle\left.\right|^{2} \\
& =C_{D} \sum_{M_{a}, M_{\beta}} w_{M_{a}}\left\langle\alpha J_{a} M_{a}\right| d_{q}\left|\beta J_{\beta} M_{\beta}\right\rangle\left\langle\beta J_{\beta} M_{\beta}\right| d_{q}^{\dagger}\left|a J_{a} M_{\alpha}\right\rangle \\
& \left(\sum_{M_{a}}\left|\alpha J_{a} M_{a}\right\rangle\left\langle\alpha J_{a} M_{a}\right|=1\right) \\
& =C_{\mathrm{D}} \sum_{M_{\alpha}, M_{\beta}} w_{M_{\alpha}}\left\langle\alpha J_{a} M_{\alpha}\right|\left(\sum_{M_{a}^{\prime \prime}}\left|\alpha J_{a} M_{\alpha}^{\prime \prime}\right\rangle\left\langle\alpha J_{a} M_{a}^{\prime \prime}\right|\right) d_{q}\left|\beta J_{\beta} M_{\beta}\right\rangle \\
& \times\left\langle\beta J_{\beta} M_{\beta}\right| d_{a}^{\dagger}\left(\sum_{M_{a}^{\prime}}\left|\alpha J_{a} M_{a}^{\prime}\right\rangle\left\langle\alpha J_{a} M_{a}^{\prime}\right|\right)\left|\alpha J_{a} M_{a}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& I_{\alpha \beta}^{q}=C_{D} \sum_{M_{\alpha}^{\prime}, M_{a}^{\prime \prime}} \sum_{M_{a}, M_{\beta}} w_{M_{\alpha}}\left\langle a J_{a} M_{\alpha}^{\prime} \mid a J_{a} M_{a}\right\rangle\left\langle a J_{\alpha} M_{a} \mid a J_{a} M_{a}^{\prime \prime}\right\rangle \\
& \times\left\langle a J_{a} M_{a}^{\prime \prime}\right| d_{q}\left|\beta J_{\beta} M_{\beta}\right\rangle\left\langle\beta J_{\beta} M_{\beta}\right| d_{q}^{\dagger}\left|a J_{\alpha} M_{a}^{\prime}\right\rangle \\
& =C_{D} \sum_{M_{\alpha}^{\prime}, M_{a}^{\prime \prime}, M_{\beta}}\left\langle a J_{\alpha} M_{\alpha}^{\prime}\right| \rho_{\alpha}\left|\alpha J_{\alpha} M_{a}^{\prime \prime}\right\rangle \quad \quad\left(\rho_{\alpha}=\sum_{M_{\alpha}} w_{M_{\alpha}}\left|a J_{\alpha} M_{\alpha}\right\rangle\left\langle a J_{\alpha} M_{\alpha}\right|\right) \\
& \left.\times\left\langle a J_{a} M_{\alpha}^{\prime \prime}\right| d_{q}\left|\beta J_{\beta} M_{\beta}\right\rangle\left\langle\beta J_{\beta} M_{\beta}\right| d_{q}^{\dagger}\left|a J_{\alpha} M_{\alpha}^{\prime}\right\rangle\right)=\left\langle a J_{\alpha} M_{\alpha}^{\prime}\right| d_{q}\left|\beta J_{\beta} M_{\beta}\right\rangle^{*} \\
& \left\langle\left\langle\alpha J_{\alpha} M_{\alpha}\right| d_{q} \mid \beta J_{\beta} M_{\beta}\right\rangle \\
& =(-1)^{J_{\beta}+M_{\alpha}+1}\left(\begin{array}{ccc}
J_{\alpha} & J_{\beta} & 1 \\
-M_{\alpha} & M_{\beta} & q
\end{array}\right)\left\langle a J_{\alpha}\|\mathbf{d}\| \beta J_{\beta}\right\rangle
\end{aligned}
$$

Wigner-Eckart theorem

$$
\begin{aligned}
=C_{\mathrm{D}} & \sum_{M_{a}^{\prime}, M_{\alpha}^{\prime \prime}, M_{\beta}}(-1)^{M_{a}^{\prime}+M_{a}^{\prime \prime}}\left\langle a J_{\alpha} M_{\alpha}^{\prime}\right| \rho_{a}\left|a J_{\alpha} M_{\alpha}^{\prime \prime}\right\rangle \\
& \times\left(\begin{array}{ccc}
J_{a} & J_{\beta} & 1 \\
-M_{\alpha}^{\prime \prime} & M_{\beta} & q
\end{array}\right)\left(\begin{array}{ccc}
J_{a} & J_{\beta} & 1 \\
-M_{a}^{\prime} & M_{\beta} & q
\end{array}\right)\left|\left\langle a J_{\alpha}\|\mathbf{d}\| \beta J_{\beta}\right\rangle\right|^{2}
\end{aligned}
$$

linear polarization components

$$
\begin{aligned}
& \begin{array}{l}
d_{x}=\frac{1}{\sqrt{2}}\left(d_{-1}-d_{1}\right) \\
d_{y}=\frac{i}{\sqrt{2}}\left(d_{-1}+d_{1}\right)
\end{array} \\
& I_{a \beta}^{X}=\frac{C_{\mathrm{D}}}{2} \sum_{M_{a}^{\prime}, M_{a}^{\prime \prime}, M_{\beta}}\left\langle a J_{\alpha} M_{a}^{\prime}\right| \rho_{a}\left|\alpha J_{a} M_{a}^{\prime \prime}\right\rangle \\
& \times\left\langle\alpha J_{\alpha} M_{\alpha}^{\prime \prime}\right| d_{-1}-d_{1}\left|\beta J_{\beta} M_{\beta}\right\rangle\left\langle\beta J_{\beta} M_{\beta}\right| d_{-1}^{\dagger}-d_{1}^{\dagger}\left|\alpha J_{\alpha} M_{\alpha}^{\prime}\right\rangle \\
& I_{\alpha \beta}^{y}=\frac{C_{\mathrm{D}}}{2} \sum_{M_{\alpha}^{\prime}, M_{\alpha}^{\prime \prime}, M_{\beta}}\left\langle\alpha J_{\alpha} M_{\alpha}^{\prime}\right| \rho_{\alpha}\left|\alpha J_{\alpha} M_{\alpha}^{\prime \prime}\right\rangle \\
& \times\left\langle a J_{\alpha} M_{\alpha}^{\prime \prime}\right| \underline{d_{-1}+d_{1}}\left|\beta J_{\beta} M_{\beta}\right\rangle\left\langle\beta J_{\beta} M_{\beta}\right| d_{-1}^{\dagger}+d_{1}^{\dagger}\left|\alpha J_{\alpha} M_{a}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{gathered}
I_{\alpha \beta}^{x}=\frac{C_{\mathrm{D}}}{12}(1-\cos 2 \omega t)|\langle\alpha 1\|\mathbf{d}\| \beta 0\rangle|^{2} \times \exp \left(-A_{\alpha \beta} t\right) \\
I_{\alpha \beta}^{y}=\frac{C_{\mathrm{D}}}{12}(1+\cos 2 \omega t)|\langle\alpha 1\|\mathbf{d}\| \beta 0\rangle|^{2} \times \exp \left(-A_{\alpha \beta} t\right) \\
\downarrow=\frac{e}{2 m} g_{j} B
\end{gathered}
$$

more systematic method

- density matrix and Stokes parameters are derived in accordance with "Polarization in Spectral Lines" by E. Landi Degl'Innocenti and M. Landolfi
- correspondence to the intuitive method of the results is considered

equation of motion

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho=\frac{2 \pi}{\mathrm{i} h}[H, \rho]
$$

- Hamiltonian can involve atomic processes in addition to magnetic field (QED is required)

$$
\left.\left.\left.\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{\alpha J}\left(M, M^{\prime}\right)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha J}\left(M-M^{\prime}\right) \rho_{\alpha J}\left(M, M^{\prime}\right) \\
+\sum_{\alpha_{\ell} J_{\ell}} \sum_{M_{\ell} M_{\ell}^{\prime}} \rho_{\alpha_{\ell} J_{\ell}}\left(M_{\ell}, M_{\ell}^{\prime}\right) T_{\mathrm{A}}\left(\alpha J M M^{\prime}, \alpha_{\ell} J_{\ell} M_{\ell} M_{\ell}^{\prime}\right) \\
+\sum_{\alpha_{u} J_{u}} \sum_{M_{u} M_{u}^{\prime}} \rho_{\alpha_{u} J_{u}}\left(M_{u}, M_{u}^{\prime}\right) & {\left[T_{\mathrm{E}}\left(\alpha J M M^{\prime}, \alpha_{u} J_{u} M_{u} M_{u}^{\prime}\right)\right.} \\
& \left.+T_{\mathrm{S}}\left(\alpha J M M^{\prime}, \alpha_{u} J_{u} M_{u} M_{u}^{\prime}\right)\right] \\
-\sum_{M^{\prime \prime}}\left\{\rho_{\alpha J}\left(M, M^{\prime \prime}\right)[\right. & {\left[R_{\mathrm{A}}\left(\alpha J M^{\prime} M^{\prime \prime}\right)+R_{\mathrm{E}}\left(\alpha J M^{\prime \prime} M^{\prime}\right)\right.} \\
+ & \left.R_{\mathrm{S}}\left(\alpha J M^{\prime \prime} M^{\prime}\right)\right]
\end{array}\right\} \begin{array}{r}
+\rho_{\alpha J}\left(M^{\prime \prime}, M^{\prime}\right)
\end{array} R_{R_{\mathrm{A}}\left(\alpha J M^{\prime \prime} M\right)+R_{\mathrm{E}}\left(\alpha J M M^{\prime \prime}\right)}+R_{\mathrm{S}}\left(\alpha J M M^{\prime \prime}\right)\right]\right\}\right\}
$$

quantization axis in
B direction

\longleftarrow standard

representation

spherical tensors

- spherical representation of density matrix is obtained from standard matrix as

$$
\begin{aligned}
& \rho_{Q}^{K}(\alpha J, \alpha J)
\end{aligned}=\rho_{Q}^{K}(\alpha J) .
$$

where $K=0,1, \ldots, 2 \mathrm{~J}$ and $\mathrm{Q}=-K, \ldots, K$

- it is understood as change of basis to express matrices: e.g., for $J=1 / 2$

$$
\begin{aligned}
\rho(M, N) & :\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\rho_{Q}^{K} & :\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

advantages

- standard representation requires two rotation matrices in rotation of coordinates,

$$
\left[\rho_{\alpha J}\left(M, M^{\prime}\right)\right]_{\text {new }}=\sum_{N N^{\prime}} \mathcal{D}_{N M}^{J}(R)^{*} \mathcal{D}_{N^{\prime} M^{\prime}}^{J}(R)\left[\rho_{\alpha J}\left(N, N^{\prime}\right)\right]_{\text {old }}
$$

while spherical representation needs just one rotation matrix

$$
\left[\rho_{Q}^{K}\left(\alpha J, \alpha^{\prime} J^{\prime}\right)\right]_{\text {new }}=\sum_{Q^{\prime}}\left[\rho_{Q^{\prime}}^{K}\left(\alpha J, \alpha^{\prime} J^{\prime}\right)\right]_{\text {old }} \mathcal{D}_{Q^{\prime} Q}^{K}(R)^{*}
$$

- many components vanish when there exists some symmetry

spherical representation

- multiplying both sides in equation of motion by

$$
(-1)^{J-M} \sqrt{2 K+1}\left(\begin{array}{ccc}
J & J & K \\
M & -M^{\prime} & -Q
\end{array}\right)
$$

and carrying out summation over M and M^{\prime} give

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{Q}^{K}(\alpha J)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha J} Q \rho_{Q}^{K}(\alpha J)
$$

quantization axis in B direction

$$
\begin{aligned}
& +\sum_{\alpha_{\ell} J_{\ell}} \sum_{K_{\ell} Q_{\ell}} \rho_{Q_{\ell}}^{K_{\ell}}\left(\alpha_{\ell} J_{\ell}\right) \mathbb{T}_{\mathrm{A}}\left(\alpha J K Q, \alpha_{\ell} J_{\ell} K_{\ell} Q_{\ell}\right)+ \\
& +\sum_{\alpha_{u} J_{u}} \sum_{K_{u} Q_{u}} \rho_{Q_{u}}^{K_{u}}\left(\alpha_{u} J_{u}\right)\left[\mathbb{T}_{\mathrm{E}}\left(\alpha J K Q, \alpha_{u} J_{u} K_{u} Q_{u}\right)\right. \\
& \left.+\mathbb{T}_{\mathrm{S}}\left(\alpha J K Q, \alpha_{u} J_{u} K_{u} Q_{u}\right)\right]
\end{aligned}
$$

$$
-\sum_{K^{\prime} Q^{\prime}} \rho_{Q^{\prime}}^{K^{\prime}}(\alpha J)\left[\mathbb{R}_{\mathrm{A}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)+\mathbb{R}_{\mathrm{E}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)\right.
$$

$$
\left.+\mathbb{R}_{\mathrm{S}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)\right]
$$

two-level atom

- upper level

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} Q \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)
$$

$$
+\sum_{K^{\prime} Q^{\prime}} \mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} K^{\prime} Q^{\prime}\right) \rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{\ell} J_{\ell}\right)
$$

$$
-\sum_{K^{\prime} Q^{\prime}} \frac{\left[\mathbb{R}_{\mathrm{E}}\left(\alpha_{u} J_{u} K Q K^{\prime} Q^{\prime}\right)\right.}{\int \delta_{K K^{\prime}} \delta_{Q Q^{\prime}} \sum A\left(\alpha J \rightarrow \alpha_{\ell} J_{\ell}\right)}+\frac{\mathbb{R}_{\mathrm{S}}\left(\alpha_{u} J_{u} K Q K^{\prime} Q^{\prime}\right)}{\rightarrow \text { ignored }}
$$

- lower level

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \rho_{Q}^{K}\left(\alpha_{\ell} J_{\ell}\right)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{\ell} J_{\ell}} Q \rho_{Q}^{K}\left(\alpha_{\ell} J_{\ell}\right) \\
& \\
& \\
& \\
& \quad+\sum_{K^{\prime} Q^{\prime}}\left[\mathbb{T}_{\mathrm{E}}\left(\alpha_{\ell} J_{\ell} K Q, \alpha_{u} J_{u} K^{\prime} Q^{\prime}\right)+\mathbb{T}_{\mathrm{S}}\left(\alpha_{\ell} J_{\ell} K Q, \alpha_{u} J_{u} K^{\prime} Q^{\prime}\right)\right] \rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{u} J_{u}\right) \\
& \\
& \quad-\sum_{K^{\prime} Q^{\prime}} \mathbb{R}_{\mathrm{A}}\left(\alpha_{\ell} J_{\ell} K Q K^{\prime} Q^{\prime}\right) \rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{\ell} J_{\ell}\right)
\end{aligned}
$$

- when stationary and lower level is unpolarized

$$
\begin{aligned}
& \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\frac{\mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} 00\right)}{2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} Q+A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)} \times \rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right) \\
& \mathbb{T}_{\mathrm{A}}\left(\alpha J K Q, \alpha_{\ell} J_{\ell} \bar{I}_{\ell} Q_{\ell}\right)=\left(2 J_{\ell}+1\right) B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha J\right) \\
& \times \sum_{K_{\mathrm{r}} Q_{\mathrm{r}}} \sqrt{3(2 K+1)\left(2 \frac{K}{\ell}_{\ell}+1\right)\left(2 K_{\mathrm{r}}+1\right)} \\
& \times(-1)^{K_{\ell}+Q_{Q}}\left\{\begin{array}{ccc}
J & J_{\ell} & 1 \\
J & J_{\ell} & 1 \\
K & \frac{K_{\ell}}{K_{\ell}} & K_{\mathrm{r}}
\end{array}\right\} \frac{\left(\begin{array}{ccc}
K & 0 K_{\ell} & K_{\mathrm{r}} \\
-Q & 0_{Q_{\ell}} & -Q_{\mathrm{r}}
\end{array}\right)}{\downarrow} \frac{J_{Q_{\mathrm{r}}}^{K_{\mathrm{r}}}\left(\nu_{\alpha J, \alpha_{\ell} J_{\ell}}\right)}{\downarrow} \\
& K_{r}=K, Q_{r}=-Q
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} 00\right) \\
&=\left(2 J_{\ell}+1\right) B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right) \times \sqrt{3(2 K+1)^{2}} \\
& \times\left\{\begin{array}{ccc}
J_{u} & J_{\ell} & 1 \\
J_{u} & J_{\ell} & 1 \\
K & 0 & K
\end{array}\right\}\left(\begin{array}{ccc}
K & 0 & K \\
-Q & 0 & Q
\end{array}\right) \underline{J_{-Q}^{K}\left(\nu_{\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}}\right)} \\
&= \sqrt{3\left(2 J_{\ell}+1\right)} B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right) \\
& \times(-1)^{1+J_{u}+J_{\ell}+Q}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\} \underline{J_{Q}\left(\nu_{\left.\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}\right)}^{K}\right.} \\
& J_{Q}^{K}(\nu)=\oint \frac{\mathrm{d} \Omega}{4 \pi} \mathcal{I}_{Q}^{K}(\nu, \vec{\Omega})=\oint \frac{\mathrm{d} \Omega}{4 \pi} \sum_{i=0}^{3} \mathcal{T}_{Q}^{K}(i, \Omega) S_{i}(\nu, \vec{\Omega}) \\
& \text { geometrical factors }
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)= \sqrt{\frac{2 J_{\ell}+1}{2 J_{u}+1}} \frac{B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right)}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)+2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} Q} \\
& \times w_{J_{u}^{u} J_{\ell}}^{(K)}(-1)^{Q} J_{-Q}^{K}\left(\nu_{0}\right) \rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right) \\
& \\
& w_{J_{u} J_{\ell}}^{(K)}=(-1)^{1+J_{\ell}+J_{u}} \sqrt{3\left(2 J_{u}+1\right)}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\}
\end{aligned}
$$

$$
\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\frac{1}{1+\mathrm{i} Q H_{u}}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{B=0}
$$

essence of Hanle effect

$$
H_{u}=\frac{2 \pi \nu_{\mathrm{L}} g_{\alpha_{u}} J_{u}}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)}
$$

$$
\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\frac{1}{1+\mathrm{i} Q H_{u}}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{B=0}
$$

- if $Q H_{u}$ is expressed to be $\tan (a), \rho_{Q}^{K}\left(a_{u} J_{u}\right)$ is rewritten as

$$
\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\mathrm{e}^{-\mathrm{i} \alpha} \cos \alpha\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{B=0}
$$

- effect of magnetic field is to reduce by factor of

$$
\cos \alpha=\sqrt{\frac{1}{1+Q^{2} H_{u}^{2}}}
$$

and to dephase by

$$
\tan ^{-1} Q H_{u}
$$

e.g
$\rho_{x}(t)=\frac{1}{4}\left(\begin{array}{ccc}1 & 0 & e^{2 i \omega t} \\ 0 & 2 & 0 \\ e^{-2 i \omega t} & 0 & 1\end{array}\right)$

Stokes parameters

$$
\tilde{\varepsilon}_{i}(\vec{\Omega})=\int_{\Delta \nu} \varepsilon_{i}(\nu, \vec{\Omega}) \mathrm{d} \nu
$$

$$
\begin{aligned}
\tilde{\varepsilon}_{i}(\vec{\Omega})= & \frac{h^{2} \nu^{4}}{2 \pi c^{2}} \mathcal{N}\left(2 J_{u}+1\right) B\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right) \\
& \times \sum_{K Q} \sqrt{3}(-1)^{1+J_{\ell}+J_{u}}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right) \\
= & \frac{h \nu}{4 \pi} \mathcal{N} \sqrt{2 J_{u}+1} A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right) \sum_{K Q} w_{J_{u} J_{\ell}}^{(K)} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right) \\
= & k_{\mathrm{L}}^{\mathrm{A}} \oint \frac{\mathrm{~d} \Omega^{\prime}}{4 \pi} \sum_{j=0}^{3} P_{i j}\left(\vec{\Omega}, \vec{\Omega}^{\prime} ; \vec{B}\right) I_{j}\left(\nu_{0}, \vec{\Omega}^{\prime}\right) \\
& \quad\left(P_{i j}\left(\vec{\Omega}, \vec{\Omega}^{\prime} ; \vec{B}\right)=\sum_{K Q} W_{K}\left(J_{\ell}, J_{u}\right)(-1)^{Q} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \mathcal{T}_{-Q}^{K}\left(j, \vec{\Omega}^{\prime}\right)\right.
\end{aligned}
$$

- for $J_{\ell}=1$ and $J_{u}=2$

$$
\begin{aligned}
& \tilde{p}_{Q} \equiv \frac{\tilde{\varepsilon}_{Q}(\vec{\Omega})}{\tilde{\varepsilon}_{I}(\vec{\Omega})}=\frac{3 W_{2}\left[\sin ^{2} \beta+\left(1+\cos ^{2} \beta\right) \cos ^{2} \alpha_{2}\right]}{8+W_{2}\left(1-3 \cos ^{2} \beta-3 \sin ^{2} \beta \cos ^{2} \alpha_{2}\right)} \\
& \tilde{p}_{U} \equiv \frac{\tilde{\varepsilon}_{U}(\vec{\Omega})}{\tilde{\varepsilon}_{I}(\vec{\Omega})}=\frac{6 W_{2} \cos \beta \sin \alpha_{2} \cos \alpha_{2}}{8+W_{2}\left(1-3 \cos ^{2} \beta-3 \sin ^{2} \beta \cos ^{2} \alpha_{2}\right)}
\end{aligned}
$$

where $\tan \alpha_{2}=2 H_{u}$

Hanle diagram

detailed line profile

$$
\begin{aligned}
& \varepsilon_{i}(\nu, \vec{\Omega})=\frac{2 h \nu^{3}}{c^{2}} \eta_{i}^{\mathrm{s}}(\nu, \vec{\Omega}) \\
& \eta_{i}^{\mathrm{s}}(\nu, \vec{\Omega})=\frac{h \nu}{4 \pi} \mathcal{N} \sum_{\alpha_{\ell} J_{\ell}} \sum_{\alpha_{u} J_{u}}\left(2 J_{u}+1\right) B\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right) \\
& \times \sum_{K Q K_{u} Q_{u}} \sqrt{3(2 K+1)\left(2 K_{u}+1\right)} \\
& \times \sum_{M_{u} M_{u}^{\prime} M_{\ell} q q^{\prime}}(-1)^{1+J_{u}-M_{u}+q^{\prime}}\left(\begin{array}{ccc}
J_{u} & J_{\ell} & 1 \\
-M_{u} & M_{\ell} & -q
\end{array}\right)\left(\begin{array}{ccc}
J_{u} & J_{\ell} & 1 \\
-M_{u}^{\prime} & M_{\ell} & -q^{\prime}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
1 & 1 & K \\
q & -q^{\prime} & -Q
\end{array}\right)\left(\begin{array}{ccc}
J_{u} & J_{u} & K_{u} \\
M_{u}^{\prime} & -M_{u} & -Q_{u}
\end{array}\right) \\
& \times \operatorname{Re}\left[\mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \rho_{Q_{u}}^{K_{u}}\left(\alpha_{u} J_{u}\right) \Phi\left(\nu_{\alpha_{u} J_{u} M_{u}, \alpha_{\ell} J_{\ell} M_{\ell}}-\nu\right)\right] \\
& \Phi\left(\nu_{a b}-\nu\right)=\phi\left(\nu_{a b}-\nu\right)+\mathrm{i} \psi\left(\nu_{a b}-\nu\right) \\
& =\frac{1}{\pi} \frac{\Gamma_{a b}}{\Gamma_{a b}^{2}+\left(\nu_{a b}+\Delta_{a b}-\nu\right)^{2}}+\frac{\mathrm{i}}{\pi} \frac{\nu_{a b}+\Delta_{a b}-\nu}{\Gamma_{a b}^{2}+\left(\nu_{a b}+\Delta_{a b}-\nu\right)^{2}},
\end{aligned}
$$

where

$$
\Gamma_{a b}=\frac{\gamma_{a b}}{4 \pi}=\frac{\gamma_{a}+\gamma_{b}}{4 \pi}, \quad \Delta_{a b}=\Delta_{a}-\Delta_{b}
$$

$$
\begin{aligned}
\varepsilon_{i}(\nu, \vec{\Omega})= & \frac{h \nu}{4 \pi} \mathcal{N} \sqrt{2 J_{u}+1} A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right) \\
& \times \sum_{K K^{\prime} Q} \mathcal{T}_{Q}^{K^{\prime}}(i, \vec{\Omega}) \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right) \Phi_{Q}^{K K^{\prime}}\left(J_{\ell}, J_{u} ; \nu\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Phi_{Q}^{K K}\left(J_{\ell}, J_{u} ; \nu\right)}{\times \sum_{M_{u} M_{u}^{\prime} M_{\ell} \ell^{\prime} q q^{\prime}}}(-1)^{1+J_{u}-M_{u}+q^{\prime}}\left(\begin{array}{ccc}
J_{u} & J_{\ell} & 1 \\
-M_{u} & M_{\ell} & -q
\end{array}\right)\left(\begin{array}{ccc}
J_{u} & J_{\ell} & 1 \\
-M_{u}^{\prime} & M_{\ell} & -q^{\prime}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
J_{u} & J_{u} & K \\
M_{u}^{\prime} & -M_{u} & -Q
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & K^{\prime} \\
q & -q^{\prime} & -Q
\end{array}\right) \\
& \times \frac{1}{2}\left[\Phi\left(\nu_{\alpha_{u} J_{u} M_{u}, \alpha_{\ell} J_{\ell} M_{\ell}}-\nu\right)+\Phi\left(\nu_{\alpha_{u} J_{u} M_{u}^{\prime}, \alpha_{\ell} J_{\ell} M_{\ell}}-\nu\right)^{*}\right] .
\end{aligned}
$$

- substitution of $\rho_{Q}^{K}\left(a_{u} J_{u}\right)$ gives

$$
\begin{aligned}
& \varepsilon_{i}(\nu, \vec{\Omega})=k_{\mathrm{L}}^{\mathrm{A}} \sum_{K K^{\prime} Q} \Phi_{Q}^{K K^{\prime}}\left(J_{\ell}, J_{u} ; \nu\right) \\
& \quad \times \oint \frac{\mathrm{d} \Omega^{\prime}}{4 \pi} \sum_{j=0}^{3} w_{J_{u} J_{\ell}}^{(K)}(-1)^{Q} \mathcal{T}_{Q}^{K^{\prime}}(i, \vec{\Omega}) \mathcal{T}_{-Q}^{K}\left(j, \vec{\Omega}^{\prime}\right) \frac{1}{1+\mathrm{i} Q H_{u}} I_{j}\left(\nu_{0}, \vec{\Omega}^{\prime}\right)
\end{aligned}
$$

- $J_{\ell}=0, J_{u}=1$ and $\beta=0^{\circ}$
reference

$$
\begin{aligned}
& \varepsilon_{0}(\nu, \vec{\Omega})=\frac{3}{8} k_{\mathrm{L}}^{\mathrm{A}} \Delta \Omega^{\prime} I^{\prime}\left[\phi_{-1}+\phi_{1}\right] \\
& \varepsilon_{1}(\nu, \vec{\Omega})=\frac{3}{8} k_{\mathrm{L}}^{\mathrm{A}} \Delta \Omega^{\prime} I^{\prime}\left[\frac{1}{1+4 H_{u}^{2}}\left(\phi_{-1}+\phi_{1}\right)-\frac{2 H_{u}}{1+4 H_{u}^{2}}\left(\psi_{-1}-\psi_{1}\right)\right] \\
& \varepsilon_{2}(\nu, \vec{\Omega})=\frac{3}{8} k_{\mathrm{L}}^{\mathrm{A}} \Delta \Omega^{\prime} I^{\prime}\left[\frac{2 H_{u}}{1+4 H_{u}^{2}}\left(\phi_{-1}+\phi_{1}\right)+\frac{1}{1+4 H_{u}^{2}}\left(\psi_{-1}-\psi_{1}\right)\right] \\
& \varepsilon_{3}(\nu, \vec{\Omega})=-\frac{3}{8} k_{\mathrm{L}}^{\mathrm{A}} \Delta \Omega^{\prime} I^{\prime}\left[\phi_{-1}-\phi_{1}\right]
\end{aligned}
$$

$$
\Phi_{q}=\phi_{q}+\mathrm{i} \psi_{q}=\Phi\left(\nu_{\alpha_{u} 1-q, \alpha_{\ell} 00}-\nu\right)
$$

$$
A=5 \times 10^{7} \mathrm{~s}^{-1}
$$

$$
H_{u}=1\left(\Gamma=3.98 \times 10^{6} \mathrm{~s}^{-1}, B=5.69 \mathrm{G}\right)
$$

frequency-

Hanle effect vanishes
in the far wings
due to
Zeeman effect

$\left(v_{0}-v\right) / \Gamma$

next problems

- radiation field tensors should be derived as solution of radiation transport equation
- collisional transitions should be taken into account: excitation, depolarization,...

