
Radiation transport and 
polarized line pro!le formation

M. Goto, NIFS



intuitive understanding
• two level atom (Jℓ = 0 and Ju = 1) is taken as 

example

• density matrix is set up for atoms under 
anisotropic irradiation (incoherent)

• rotation of coordinate gives rise to coherence 
between magnetic sublevels

• equation of motion due to magnetic !eld 
perturbation is solved for density matrix 

• Stokes parameters are derived from density 
matrix
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anisotropic photo-excitation
• unpolarized σ-light can be understood to consist 

of incoherent two circularly polarized lights

• excitation gives rise to anisotropic
excited level

• there is no coherence (non-diagonal component) 
at this moment
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• coordinates are rotated so that quantization axis 
points to B direction

• coherence appears between M = +1 and
M = −1 states
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• equation of motion for density matrix

• Hamiltonian HF consists of perturbation due to 
magnetic !eld

• μB and gJ are Bohr magneton and Landé g-factor, 
respectively, and ω0 corresponds to Larmor 
angular frequency

role of magnetic !eld
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• HF is explicitly written as

• right hand side of equation of
motion is calculated as

= �¯
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• ρx (t) is readily obtained with initial condition

• line intensity is derived from density matrix 
obtained
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• measurable intensity is summation over all 
combinations of magnetic sublevels

line intensity

spherical components
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dq → dx and dy
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linear polarization components
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statistical equilibrium equations
• density matrix and Stokes parameters are derived 

following "Polarization in Spectral Lines" by
E. Landi Degl'Innocenti and M. Landol!

• correspondence to the intuitive method of the 
results is considered
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• Hamiltonian can involve atomic processes in 
addition to magnetic !eld

280 CHAPTER 7

By means of substitutions i) to v) the statistical equilibrium equations and the
radiative transfer equations for the multi-level atom can be directly deduced from
the corresponding equations of Chap. 6.

7.1.a Statistical Equilibrium Equations

In Eqs. (6.62) and (6.69) we substitute (see also Fig. 6.1)

m → αJM

m′ → αJM ′

m′′ → αJM ′′

n → α!J!M!

n′ → α!J!M
′
!

p → αuJuMu

p′ → αuJuM ′
u ,

where the indices " (for ‘lower’) and u (for ‘upper’) denote any level of energy lower
(or higher, respectively) than EαJ . We obtain

d
dt
ραJ(M, M ′) = −2πi νL gαJ (M − M ′) ραJ(M, M ′)

+
∑

α
!
J

!

∑

M
!
M ′

!

ρα
!
J

!
(M!, M

′
!) TA(αJMM ′,α!J!M!M

′
!)

+
∑

α
u

J
u

∑

M
u

M ′
u

ρα
u

J
u
(Mu, M ′

u)
[
TE(αJMM ′,αuJuMuM ′

u)

+ TS(αJMM ′,αuJuMuM ′
u)
]

−
∑

M ′′

{
ραJ(M, M ′′)

[
RA(αJM ′M ′′) + RE(αJM ′′M ′)

+ RS(αJM ′′M ′)
]

+ ραJ (M ′′, M ′)
[
RA(αJM ′′M) + RE(αJMM ′′)

+ RS(αJMM ′′)
]}

, (7.5)

where the various rates (for which we have introduced shorthand notations) are
given by

TA(αJMM ′,α!J!M!M
′
!) =

=
32π4

h2c

∑

qq′

(−1)q+q′
(d−q)αJM, α!J!M!

(d−q′)∗αJM ′, α!J!M ′
!

Jqq′ (ναJ, α!J!
)

TE(αJMM ′,αuJuMuM ′
u) =

=
64π4

3hc3

∑

q

(d−q)α
u

J
u

M ′
u

, αJM ′ (d−q)
∗
α

u
J
u

M
u

, αJM ν3
α

u
J
u

, αJ

equation of motion
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of subsystems a and b , respectively, and ρ the density operator of the compound
system. If O(a) is an operator acting on subsystem a only, we have

〈
O(a)
〉

= Tr
(
ρO(a)

)
=
∑

nm

an | bm | ρO(a) | bm | an

=
∑

n

an |
{∑

m

bm | ρ | bm

}
O(a) | an

=
∑

n

an |Tr(b)(ρ) O(a) | an .

On the other hand, if ρ(a) is the density operator of subsystem a, we also have

〈
O(a)
〉

= Tr(a)
(
ρ(a) O(a)

)
=
∑

n

an | ρ(a) O(a) | an .

Comparison of these two relations shows that

Tr(b)(ρ) = ρ(a) . (3.87)

h) The time evolution of the density operator in the Schrödinger representation is
described by the equation

d
dt
ρ =

2π
ih

[H, ρ] , (3.88)

where the symbol [A, B] denotes the commutator of the two operators A and B,
and where H is the Hamiltonian of the system.

This equation follows directly from the Schrödinger equation applied to the state
vectors |ψ(α) entering the definition of ρ. In fact, we have from Eq. (3.79)

d
dt
ρ =
∑

α

pα

[(
d
dt

|ψ(α)

)
ψ(α)| + |ψ(α)

(
d
dt

ψ(α)|
)]

=
∑

α

pα

2π
ih

H |ψ(α) ψ(α)|−
∑

α

pα

2π
ih

|ψ(α) ψ(α)|H ,

which proves Eq. (3.88).

As far as the density-matrix elements are concerned, their time evolution depends
on the particular basis {|un }. If we choose the basis of the energy eigenvectors,
or, in other words, if the vectors |un are such that

H |un = En|un ,

we have from Eq. (3.88)

d
dt
ρmn =

d
dt

um| ρ |un =
2π
ih

um| [H, ρ] |un = −2πi νmn ρmn ,

standard
representation
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for

quantization axis in
B direction
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• spherical representation of density matrix is 
obtained from standard matrix as

where                                     and 

• the transformation is understood as change of 
matrix basis, e.g., for

spherical tensors
124 CHAPTER 3

and for the magnetic sublevels of a given J-level

ρK
Q (αJ,αJ) = ρK

Q (αJ)

=
∑

MM ′

(−1)J−M
√

2K + 1
(

J J K
M −M ′ −Q

)
ραJ (M, M ′) , (3.101)

with the conjugation property

ρK
Q (αJ)∗ = (−1)Q ρK

−Q(αJ) . (3.102)

The analytical expressions for the most common multipole moments, as functions
of the ordinary density-matrix elements, are given in Tables 3.6 and 3.7.

The multipole moments can be also defined for a J-level having hyperfine struc-
ture. With self-evident notations, we have

αJIρK
Q (F, F ′) =

∑

ff ′

(−1)F−f
√

2K + 1

×
(

F F ′ K
f −f ′ −Q

)
ραJI(Ff, F ′f ′) . (3.103)

Relations similar to those in Eqs. (3.93) and (3.94) can be easily established for
the multipole moments. From Eq. (3.93), after some Racah algebra involving the
contraction of 3-j symbols (Eq. (2.42)), one obtains

ρK
Q (αJ) =

∑

FF ′

(−1)J+I+F ′+K
√

(2F + 1)(2F ′ + 1)

×
{

F F ′ K
J J I

}
αJIρK

Q (F, F ′) . (3.104)

In a similar way, from Eq. (3.94) the following relation can be proved

ρK
Q (βL) =

∑

JJ′

(−1)L+S+J′+K
√

(2J + 1)(2J ′ + 1)

×
{

J J ′ K
L L S

}
βLSρK

Q (J, J ′) , (3.105)

where ρK
Q (βL), the multipole moment for a spinless L-term, is defined by

ρK
Q (βL) =

∑

MLM ′
L

(−1)L−ML

√
2K + 1

(
L L K

ML −M ′
L −Q

)
ρβL(ML, M ′

L) .

An important property of the multipole moments follows from the evaluation
of the expectation value of an arbitrary spherical tensor operator T K

Q . Denoting
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• standard representation requires two rotation 
matrices in rotation of coordinates,

while spherical representation needs just one 
rotation matrix

• many components vanish when there exists 
some symmetry

ATOMIC SPECTROSCOPY 123

Defining the multipole moments of the density matrix by the expression1

ρK
Q (αJ,α′J ′) =

∑

MM ′

(−1)J−M
√

2K + 1

×
(

J J ′ K
M −M ′ −Q

)
ρ (αJM,α′J ′M ′) , (3.97)

it is easy to prove that, under the rotation R of the reference system, the multipole
moments change according to the law

[
ρK

Q (αJ,α′J ′)
]

new
=
∑

Q′

[
ρK

Q′(αJ,α′J ′)
]

old
DK

Q′Q(R)∗ . (3.98)

The proof of Eq. (3.98) will not be given here, being quite similar to an analogous
proof given in Sect. 2.7. We just want to remark that the factor

√
2K + 1 in

Eq. (3.97) is inessential: in fact, if this factor is replaced by an arbitrary function
of K, Eq. (3.98) is still satisfied. The definition given in Eq. (3.97) is the same as
Omont’s (1977), but different authors give different definitions for the multipole
moments, and no definition has a special advantage.

Comparison of Eqs. (3.98) and (2.78) shows that the transformation law for the
multipole moments involves the complex conjugate of the rotation matrix, whereas
the transformation law for irreducible spherical tensors involves the rotation matrix
itself. Thus the multipole moments – as defined in Eq. (3.97) – are not, strictly
speaking, irreducible spherical tensors. A different definition could be given by
substituting ρ (α′J ′M ′,αJM) for ρ (αJM,α′J ′M ′) in Eq. (3.97), and the multipole
moments so defined would indeed satisfy the transformation law for irreducible
spherical tensors. However, this alternative definition has no advantages over ours.

Equation (3.97) can be easily inverted using the orthogonality relations of the
3-j symbols. From Eq. (2.23b) one obtains

ρ (αJM,α′J ′M ′) =
∑

KQ

(−1)J−M
√

2K + 1

×
(

J J ′ K
M −M ′ −Q

)
ρK

Q (αJ,α′J ′) . (3.99)

The conjugation property of the multipole moments follows from Eq. (3.97) and
from the Hermitian character of the density operator

ρK
Q (αJ,α′J ′)∗ = (−1)J−J′−Q ρK

−Q(α′J ′,αJ) . (3.100)

Similarly to Sect. 3.6, one can introduce shorthand notations for the multipole
moments when dealing with restricted subspaces. For instance, for the multipole
moments relative to the magnetic sublevels of a term one can write

ρK
Q (αJ,αJ ′) = αρK

Q (J, J ′) ,

1 Note that for any atom (or ion) the quantum numbers J and J ′ are both integers or both
half-integers, thus the rank K of the multipole moments is always an integer.
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where ML is the projection of the orbital angular momentum on the z-axis, and
then introducing the inner structure due to the spin, one obtains

ρβL(ML, M ′
L) =

∑

JJ′MM ′M
S

(−1)M−M ′√
(2J + 1)(2J ′ + 1)

×
(

L S J
ML MS −M

)(
L S J ′

M ′
L MS −M ′

)

× ρβLS(JM, J ′M ′) . (3.94)

We want to remark that the density-matrix elements on the basis of the eigen-
vectors of the angular momentum depend on the reference system chosen to define
such eigenvectors. If R is the rotation that brings a reference system (the ‘old’
one) into another reference system (the ‘new’ one), the eigenvectors of the angular
momentum in the new system are connected with those in the old system by the
relation

|JM new = D(R) |JM old ,

so that the transformation law for the density-matrix elements is the following

[
ρ (αJM,α′J ′M ′)

]

new
=

= new αJM | ρ |α′J ′M ′
new = old αJM |D†ρD |α′J ′M ′

old

=
∑

NN ′

DJ
NM (R)∗ DJ′

N ′M ′(R)
[
ρ (αJN,α′J ′N ′)

]

old
. (3.95)

In particular, for the matrix elements diagonal with respect to α and J

[
ραJ (M, M ′)

]

new
=
∑

NN ′

DJ
NM (R)∗ DJ

N ′M ′(R)
[
ραJ(N, N ′)

]

old
. (3.96)

3.7. Multipole Moments of the Density Matrix

As shown by Eq. (3.95), the transformation law for the density-matrix elements
on the basis of the eigenvectors of the angular momentum involves the product of
two rotation matrices. We can however construct – similarly to Sect. 2.7 – linear
combinations of these matrix elements whose transformation law involves just one
rotation matrix. By so doing we obtain the irreducible spherical components of the
density matrix, which are often referred to as the multipole moments of the density
matrix or the spherical statistical tensors.

advantages

15



• multiplying both sides in equation of motion by

and carrying out summation over M and M' give

spherical representation

284 CHAPTER 7

ηS
i (ν, #Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2Ju + 1)B(αuJu → α"J")

×
∑

M
u

M ′
u

M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

(7.10b)

ρA
i (ν, #Ω) = ηA

i (ν, #Ω)
{
Re → Im

}
(7.10c)

ρS
i (ν, #Ω) = ηS

i (ν, #Ω)
{
Re → Im

}
(7.10d)

εi(ν, #Ω) =
2hν3

c2
ηS

i (ν, #Ω)

=
hν

4π
N
∑

α
!
J

!

∑

α
u

J
u

(2Ju + 1)A(αuJu → α"J")

×
∑

M
u

M ′
u

M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

. (7.10e)

7.2. The Multi-Level Atom in the Spherical Statistical
Tensor Representation

We will now convert the equations of the previous section into the spherical statis-
tical tensor representation.

7.2.a Statistical Equilibrium Equations

Multiplying both sides of Eq. (7.5) by

(−1)J−M
√

2K + 1
(

J J K
M −M ′ −Q

)

and carrying out the summation over M and M ′ we obtain, with the use of
Eqs. (3.97) and (3.99)

d
dt
ρK

Q (αJ) = −2πi νL gαJ Q ρK
Q (αJ)

+
∑

α!J!

∑

K!Q!

ρ
K

!
Q!

(α"J") TA(αJKQ,α"J"K"Q")+
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+
∑

α
u

J
u

∑

K
u

Q
u

ρ
Ku
Q

u
(αuJu)

[
TE(αJKQ,αuJuKuQu)

+ TS(αJKQ,αuJuKuQu)
]

−
∑

K′Q′

ρK′

Q′ (αJ)
[

RA(αJKQK ′Q′) + RE(αJKQK ′Q′)

+ RS(αJKQK ′Q′)
]

, (7.11)

where

TA(αJKQ,α"J"K"Q") =
√

(2K + 1)(2K" + 1)

×
∑

MM ′

∑

M
!
M ′

!

(−1)J−M+J!−M!

(
J J K
M −M ′ −Q

)(
J" J" K"
M" −M ′

" −Q"

)

× TA(αJMM ′,α"J"M"M
′
")

TE(αJKQ,αuJuKuQu) =
√

(2K + 1)(2Ku + 1)

×
∑

MM ′

∑

MuM ′
u

(−1)J−M+J
u
−M

u

(
J J K
M −M ′ −Q

)(
Ju Ju Ku

Mu −M ′
u −Qu

)

× TE(αJMM ′,αuJuMuM ′
u)

TS(αJKQ,αuJuKuQu) =
√

(2K + 1)(2Ku + 1)

×
∑

MM ′

∑

M
u

M ′
u

(−1)J−M+Ju−Mu

(
J J K
M −M ′ −Q

)(
Ju Ju Ku
Mu −M ′

u −Qu

)

× TS(αJMM ′,αuJuMuM ′
u)

RA(αJKQK ′Q′) =
√

(2K + 1)(2K ′ + 1)

×
∑

MM ′M ′′

(
J J K
M −M ′ −Q

)

×
{(

J J K ′

M −M ′′ −Q′

)
RA(αJM ′M ′′)

+ (−1)Q′−Q

(
J J K ′

M ′′ −M ′ −Q′

)
RA(αJM ′′M)

}
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ηS
i (ν, #Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2Ju + 1)B(αuJu → α"J")

×
∑

M
u

M ′
u

M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

(7.10b)

ρA
i (ν, #Ω) = ηA

i (ν, #Ω)
{
Re → Im

}
(7.10c)

ρS
i (ν, #Ω) = ηS

i (ν, #Ω)
{
Re → Im

}
(7.10d)

εi(ν, #Ω) =
2hν3

c2
ηS

i (ν, #Ω)

=
hν

4π
N
∑

α
!
J

!

∑

α
u

J
u

(2Ju + 1)A(αuJu → α"J")

×
∑

M
u

M ′
u

M
!
qq′

3
(

Ju J" 1
−Mu M" −q

)(
Ju J" 1

−M ′
u M" −q′

)

× Re
[
Tqq′ (i, #Ω) ραuJu

(M ′
u, Mu) Φ(ναuJuMu, α!J!M!

− ν)
]

. (7.10e)

7.2. The Multi-Level Atom in the Spherical Statistical
Tensor Representation

We will now convert the equations of the previous section into the spherical statis-
tical tensor representation.

7.2.a Statistical Equilibrium Equations

Multiplying both sides of Eq. (7.5) by

(−1)J−M
√

2K + 1
(

J J K
M −M ′ −Q

)

and carrying out the summation over M and M ′ we obtain, with the use of
Eqs. (3.97) and (3.99)

d
dt
ρK

Q (αJ) = −2πi νL gαJ Q ρK
Q (αJ)

+
∑

α!J!

∑

K!Q!

ρ
K

!
Q!

(α"J") TA(αJKQ,α"J"K"Q")+MATTER-RADIATION INTERACTION (QUANTUM) 261

Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for

quantization axis in
B direction
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NON-EQUILIBRIUM ATOMIC PHYSICS 511

The atom is interacting with an anisotropic, polarized radiation field character-
ized, for any given direction !Ω and any frequency ν, by the Stokes vector Ii(ν, !Ω).1
It is also interacting with a collection of perturbers (or colliders) whose veloc-
ity distribution is assumed to be isotropic and Maxwellian, and which produce
elastic, inelastic, and superelastic collisions (see Sect. 7.13). A magnetic field is
present, with associated Larmor frequency νL (see Eq. (3.10)) and direction !ΩB.
We adopt the flat-spectrum approximation by assuming that the radiation field has
no spectral structure across a frequency interval ∆ν centered at the frequency ν0
(corresponding to the energy separation between the two levels) and larger both
than νL and than the width (in frequency units) of the levels.

We fix a reference system having the z-axis in the magnetic field direction, and
we describe the atom by the multipole moments of the density matrix. Collecting
the results on the radiative and collisional rates derived in Chap. 7 (see Eqs. (7.11)
and (7.101), and the discussion in Sects. 7.13d and 7.13e), one gets for the time
evolution of the multipole moments of the upper level

d
dt
ρK

Q (αuJu) = −2πi νL gα
u

J
u

Q ρK
Q (αuJu)

+
∑

K′Q′

TA(αuJuKQ,α"J"K
′Q′) ρK′

Q′ (α"J")

−
∑

K′Q′

[
RE(αuJuKQK ′Q′) + RS(αuJuKQK ′Q′)

]
ρK′

Q′ (αuJu)

+

√
2J" + 1
2Ju + 1

C(K)
I (αuJu,α"J") ρ

K
Q (α"J")

−
[
C(0)

S (α"J",αuJu) + D(K)(αuJu)
]
ρK

Q (αuJu) , (10.1)

and for the lower level
d
dt
ρK

Q (α"J") = −2πi νL gα!J!
Q ρK

Q (α"J")

+
∑

K′Q′

[
TE(α"J"KQ,αuJuK ′Q′) + TS(α"J"KQ,αuJuK ′Q′)

]
ρK′

Q′ (αuJu)

−
∑

K′Q′

RA(α"J"KQK ′Q′) ρK′

Q′ (α"J")

+

√
2Ju + 1
2J" + 1

C(K)
S (α"J",αuJu) ρK

Q (αuJu)

−
[
C(0)

I (αuJu,α"J") + D(K)(α"J")
]
ρK

Q (α"J") . (10.2)

total (orbital + spin) angular momentum quantum number of the electronic cloud, while α is a
collection of inner quantum numbers (see Sect. 3.1).
1 Throughout this chapter the Stokes vector will be denoted by the symbol Ii (with i = 0, 1, 2, 3)
rather than Si used in preceding chapters.
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for
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ity distribution is assumed to be isotropic and Maxwellian, and which produce
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present, with associated Larmor frequency νL (see Eq. (3.10)) and direction !ΩB.
We adopt the flat-spectrum approximation by assuming that the radiation field has
no spectral structure across a frequency interval ∆ν centered at the frequency ν0
(corresponding to the energy separation between the two levels) and larger both
than νL and than the width (in frequency units) of the levels.

We fix a reference system having the z-axis in the magnetic field direction, and
we describe the atom by the multipole moments of the density matrix. Collecting
the results on the radiative and collisional rates derived in Chap. 7 (see Eqs. (7.11)
and (7.101), and the discussion in Sects. 7.13d and 7.13e), one gets for the time
evolution of the multipole moments of the upper level
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total (orbital + spin) angular momentum quantum number of the electronic cloud, while α is a
collection of inner quantum numbers (see Sect. 3.1).
1 Throughout this chapter the Stokes vector will be denoted by the symbol Ii (with i = 0, 1, 2, 3)
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Fig.6.1. The radiative processes contributing to the time evolution of the coherence ρmm′ are
schematized in this simplified Grotrian diagram. Straight lines refer to spontaneous emission
while wavy lines refer to absorption (arrows pointing upward) or stimulated emission (arrows
pointing downward). Coherence-transfer rates are represented by transitions ending in the couple
of levels (m, m′) while coherence-relaxation rates are represented by transitions originating from
these levels. Each process is labelled with the symbol of the corresponding rate.

the rates TS and TE from the third, and the rate RA from the fourth line. The
processes described by the different rates are schematically shown in Fig. 6.1.

From the explicit expressions of the various rates (Eqs. (6.63)) it is possible
to prove some important properties. With easy transformations, one obtains the
conjugation relations

TA(m, m′, n, n′)∗ = TA(m′, m, n′, n)

TE(m, m′, p, p′)∗ = TE(m′, m, p′, p)

TS(m, m′, p, p′)∗ = TS(m
′, m, p′, p)

RA(m, m′, m′′)∗ = RA(m, m′′, m′)

RE(m, m′, m′′)∗ = RE(m′′, m′, m)

RS(m, m′, m′′)∗ = RS(m′′, m′, m) .

Another property concerns the time evolution of the trace of the density operator.
Setting m′ = m in Eq. (6.62) and summing over m one finds, after some algebra
which involves several operations of index renaming, that the term arising from TA
exactly cancels out with the terms arising from RA, and, similarly, TE cancels out
with RE , and TS cancels out with RS, so that

d
dt

(∑

m

ρmm

)
= 0 .

This property – which should be expected on the basis of Eq. (3.83) – implies that
the trace of the density operator of the atomic system can be fixed once and for
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RA(αJKQK ′Q′) = (2J + 1)
∑

αuJu

B(αJ → αuJu)

×
∑

KrQr

√
3(2K + 1)(2K ′ + 1)(2Kr + 1)

× (−1)1+J
u
−J+Kr+Q′

{
K K ′ Kr
J J J

}{
1 1 Kr
J J Ju

}(
K K ′ Kr
Q −Q′ Qr

)

× ζ+ J
Kr
Qr

(ναuJu, αJ) (7.14d)

RE(αJKQK ′Q′) = δKK′ δQQ′

∑

α
!
J

!

A(αJ → α"J") (7.14e)

RS(αJKQK ′Q′) = (2J + 1)
∑

α
!
J

!

B(αJ → α"J")

×
∑

KrQr

√
3(2K + 1)(2K ′ + 1)(2Kr + 1)

× (−1)1+J
!
−J+Q′

{
K K ′ Kr
J J J

}{
1 1 Kr
J J J"

}(
K K ′ Kr
Q −Q′ Qr

)

× ζ+ J
Kr
Qr

(ναJ, α!J!
) , (7.14f)

where1

ζ+ =
1
2

[
1 + (−1)K+K′+Kr

]
.

The equations above were first deduced by Bommier and Sahal-Bréchot (1978).
Bommier (1977) had formerly derived the corresponding equations in the standard
representation.

7.2.b Radiative Transfer Coefficients

The radiative transfer coefficients can be easily expressed in the spherical statistical
tensor representation. Using again Eq. (3.99) and writing Tqq′(i, %Ω) in terms of the
irreducible spherical tensor T K

Q (i, %Ω) via Eq. (5.156), we obtain from Eqs. (7.10)

ηA
i (ν, %Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2J" + 1)B(α"J" → αuJu)

×
∑

KQK!Q!

√
3(2K + 1)(2K" + 1) ×

1 Note that the quantity ζ+ is 1 or 0 according as the integer (K + K ′ + Kr) is even or odd,
respectively.
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TA(αJKQ,α!J!K!Q!) = (2J! + 1)B(α!J! → αJ)

×
∑

KrQr

√
3(2K + 1)(2K! + 1)(2Kr + 1)

×
∑

MM ′M
!
M ′

!
qq′

(−1)1+J−J!+Q!

(
J J K
M −M ′ −Q

)(
J! J! K!
M! −M ′

! −Q!

)

×
(

J J! 1
−M M! −q

)(
J J! 1

−M ′ M ′
! −q′

)(
1 1 Kr
q −q′ −Qr

)

× J
Kr
Qr

(ναJ, α!J!
) .

The sum of the product of the five 3-j symbols can be evaluated via Eq. (2.52).
After some manipulations similar to those of App. 2 we obtain1

TA(αJKQ,α!J!K!Q!) = (2J! + 1)B(α!J! → αJ)

×
∑

KrQr

√
3(2K + 1)(2K! + 1)(2Kr + 1)

× (−1)K!+Q!






J J! 1
J J! 1
K K! Kr






(
K K! Kr
−Q Q! −Qr

)
J

Kr
Qr

(ναJ, α!J!
) . (7.14a)

With analogous procedures involving the use of Eq. (2.34) for TE, Eq. (2.52) for
TS, Eq. (2.23a) for RE, and Eq. (2.42) – applied twice – for RA and RS, we get

TE(αJKQ,αuJuKuQu) = δKKu
δQQu

(2Ju + 1)A(αuJu → αJ)

× (−1)1+J+Ju+K

{
Ju Ju K
J J 1

}
(7.14b)

TS(αJKQ,αuJuKuQu) = (2Ju + 1)B(αuJu → αJ)

×
∑

KrQr

√
3(2K + 1)(2Ku + 1)(2Kr + 1)

× (−1)Kr+Ku+Qu






J Ju 1
J Ju 1
K Ku Kr






(
K Ku Kr
−Q Qu −Qr

)
J

Kr
Qr

(να
u

J
u

, αJ) (7.14c)

1 Note that the sign factor appearing in this formula, (−1)K!+Q! , can be written in various
different ways. As Q! is an integer, we can also write (−1)K!−Q! . As the 9-j symbol is zero unless
(K + K! + Kr) is an even integer (because of the symmetry properties following Eq. (2.48)), the
sign factor can also be written (−1)K+Kr+Q! ; etc.

TA

0 0

0
0
0

0 0

0

Kr = K, Qr = −Q

ρKQ (αuJu) =
TA(αuJuKQ,α!J! 0 0)

2πiνLgαuJuQ+A(αuJu → α!J!)
× ρ00(α!J!)

radiation !eld tensor

only this
 term remains
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= (2J� + 1)B(��J� � �uJu) �
�

3(2K + 1)2

�

�
�

�

Ju J� 1
Ju J� 1
K 0 K

�
�

�

�
K 0 K
�Q 0 Q

�
JK
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=
�
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� (�1)1+Ju+J�+Q

�
1 1 K
Ju Ju J�
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We can easily construct the associated irreducible tensors through the standard
procedure (see Eq. (5.124)). By so doing, the following irreducible tensors are
obtained

EK
Q (α,β, #Ω), T K

Q (i, #Ω), IK
Q (ν, #Ω), JK

Q (ν)

corresponding to

Eqq′(α,β, #Ω), Tqq′ (i, #Ω), Iqq′ (ν, #Ω), Jqq′ (ν) ,

respectively. The relations between the irreducible tensors and the corresponding
reducible ones are repeated here for the sake of completeness

T K
Q =

∑

qq′

(−1)1+q
√

3(2K + 1)
(

1 1 K
q −q′ −Q

)
Tqq′ , (5.155)

with the inverse transformation

Tqq′ =
∑

KQ

(−1)1+q

√
2K + 1

3

(
1 1 K
q −q′ −Q

)
T K

Q . (5.156)

Obviously, the various irreducible tensors are connected with each other by the
same relations which connect the corresponding reducible tensors, namely (cf.
Eqs. (5.131), (5.150), and (5.153))

T K
Q (i, #Ω) =

∑

αβ=±1

1
2

(σ̂i)αβ EK
Q (β,α, #Ω)

IK
Q (ν, #Ω) =

∑

αβ=±1

EK
Q (α,β, #Ω) Iβα(ν, #Ω) =

3∑

i=0

T K
Q (i, #Ω)Si(ν, #Ω)

JK
Q (ν) =

∮
dΩ
4π

IK
Q (ν, #Ω) =

∮
dΩ
4π

3∑

i=0

T K
Q (i, #Ω)Si(ν, #Ω) . (5.157)

Their conjugation properties can be deduced from the corresponding properties of
the reducible tensors, and are found to be

EK
Q (α,β, #Ω)∗ = (−1)Q EK

−Q(β,α, #Ω)

T K
Q (i, #Ω)∗ = (−1)Q T K

−Q(i, #Ω)

IK
Q (ν, #Ω)∗ = (−1)Q IK

−Q(ν, #Ω)

JK
Q (ν)∗ = (−1)Q JK

−Q(ν) . (5.158)

We rewrite here, for the sake of clarity, the expressions of the tensors EK
Q (α,β, #Ω)

and T K
Q (i, #Ω) in terms of rotation matrices (see Eqs. (5.126), (5.134), and (5.135))

EK
Q (α,β, #Ω) =

√
3(2K + 1)

(
1 1 K
α −β −Q′

)
DK

Q′Q(R) (α,β = ±1) ;

T K
Q (i, #Ω) =

∑

P

tKP (i) DK
PQ(R) (5.159)
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TABLE 5.7

Explicit expression for the tensor IK
Q (ν, "Ω). The components with negative Q-value can be

obtained from the relation IK
−Q(ν, "Ω) = (−1)Q IK

Q (ν, "Ω)∗.

I0
0 (ν, "Ω) = I(ν, "Ω)

I1
0 (ν, "Ω) =

√
3
2 cos θ V (ν, "Ω)

I1
1 (ν, "Ω) = −

√
3

2 sin θ V (ν, "Ω) eiχ

I2
0 (ν, "Ω) = 1

2
√

2

[
(3 cos2θ − 1) I(ν, "Ω) − 3 sin2θ Q̃(ν, "Ω)

]

I2
1 (ν, "Ω) = −

√
3

2 sin θ
[
cos θ I(ν, "Ω) + cos θ Q̃(ν, "Ω) + i Ũ(ν, "Ω)

]
eiχ

I2
2 (ν, "Ω) =

√
3

4

[
sin2θ I(ν, "Ω) − (1 + cos2θ) Q̃(ν, "Ω) − 2i cos θ Ũ(ν, "Ω)

]
e2iχ

where Q̃(ν, "Ω) = cos 2γ Q(ν, "Ω) − sin 2γ U(ν, "Ω)

Ũ(ν, "Ω) = cos 2γ U(ν, "Ω) + sin 2γ Q(ν, "Ω)

The derivation of the explicit expression for the tensor IK
Q (ν, "Ω) defined in Eq.

(5.157) is straightforward (see Table 5.7). Note that the expressions in Table 5.7
– like those of Table 5.4 – contain only the linear combinations Q̃ and Ũ , which
are independent of the reference direction chosen to define the Stokes parameters
Q and U .

Finally, the irreducible tensor of the radiation field JK
Q (ν) is obtained by averag-

ing IK
Q (ν, "Ω) over the solid angle. In the particular case of an unpolarized radiation

field having cylindrical symmetry about the z-axis only two components are not
zero, namely

J0
0 (ν) =

∮
dΩ
4π

I(ν, θ)

J2
0 (ν) =

1
2
√

2

∮
dΩ
4π

(3 cos2θ − 1) I(ν, θ) . (5.164)

Obviously, the component J2
0 (ν) is also zero if the radiation field is isotropic.

5.12. Further Properties of the Scattering Phase Matrix

The expression given in Sect. 5.10 for the scattering phase matrix and the various
relations proved in Sect. 5.11 allow a further extension of the remarkable properties
of this matrix.

Starting from Eq. (5.133) and using Eq. (5.163) one can directly prove the fol-
lowing relations (which are however valid only when the same reference directions

z
Ω

θ

Stokes parameters

geometrical factors

for unpolarized radiation having z-axis symmetry

(= 0  for isotropic !led)
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10.3. The Two-Level Atom: the Hanle Effect
(unpolarized lower level - no collisions)

The basic characteristics of the Hanle effect are obtained from Eq. (10.8) by retain-
ing the ‘magnetic’ term (first term in the denominator, which was set to zero in
the preceding section).1 In order to further simplify our treatment, we still neglect
– as in the preceding section – the effects of collisions (this matter is deferred until
Sect. 10.6). Using Eqs. (10.9) and (10.11), we can rewrite Eq. (10.8) in the form

ρK
Q (αuJu) =

√
2J! + 1
2Ju + 1

B(α!J! → αuJu)
A(αuJu → α!J!) + 2πi νL gα

u
J
u

Q

× w(K)
J
u

J
!

(−1)Q JK
−Q(ν0) ρ

0
0(α!J!) . (10.27)

We recall that the statistical tensors are defined in a reference system having the
z-axis in the magnetic field direction. Comparison with the corresponding expres-
sion obtained for the non-magnetic regime (Eq. (10.13)) shows that the effect of the
magnetic field is to reduce and dephase, via the imaginary term in the denominator,
all the multipole moments with Q $= 0. The efficiency of this relaxation process is
controlled by the dimensionless parameter Hu defined by

Hu =
2πνL gαuJu

A(αuJu → α!J!)
. (10.28)

This parameter is the quantum-mechanical analogue of the parameter H introduced
in the classical derivation of the Hanle effect (see Eq. (5.84)).2 Numerically, one
has (cf. Eq. (5.85))

Hu =
0.879 gα

u
J
u

B

A(αuJu → α!J!)
, (10.29)

where B is in G and A(αuJu → α!J!) in 107 s−1.
Using Hu, Eq. (10.27) can be expressed in the form

ρK
Q (αuJu) =

1
1 + i QHu

[
ρK

Q (αuJu)
]

B=0
, (10.30)

where [ρK
Q (αuJu)]B=0 are the multipole moments for the non-magnetic case (in

the presence of the same radiation field and defined in the same reference sys-
tem). Equation (10.30) summarizes the ‘essence’ of the Hanle effect. It shows
that coherences with Q = 0 (those connected with the populations of the Zeeman
sublevels, see Eq. (3.101)) are unaffected by the magnetic field, while those with

1 Note that we are still using the unpolarized lower level assumption and we are neglecting,
accordingly, stimulated emission effects.
2 The classical damping constant γ, defined in Eq. (5.28), has its obvious quantum-mechanical
counterpart in the Einstein coefficient A.
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has J! = 0, since in that case ρ0
0(α!J!) is the only non-zero multipole moment (cf.

Eq. (3.101)).
Consider the statistical equilibrium equations for the upper level (Eq. (10.1))

under the assumption that Eq. (10.7) – the unpolarized lower level hypothesis –
is valid. In stationary situations, and neglecting the rate for stimulated emission,
we immediately get an analytical expression for ρK

Q (αuJu). Bearing in mind the
expression for RE (Eq. (7.14e)) we obtain

ρK
Q (αuJu) =

TA(αuJuKQ,α!J! 0 0) +
√

2J!+1
2Ju+1 C(0)

I (αuJu,α!J!) δK0 δQ0

2πi νL gα
u

J
u

Q + A(αuJu → α!J!) + C(0)
S (α!J!,αuJu) + D(K)(αuJu)

× ρ0
0(α!J!) , (10.8)

where, from Eq. (7.14a) and using Eqs. (2.26a) and (2.49)

TA(αuJuKQ,α!J! 0 0) =
√

3(2J! + 1) B(α!J! → αuJu)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) . (10.9)

In the following we will apply Eq. (10.8) to different physical regimes, characterized
by the relative order of magnitude of the different parameters.

10.2. The Two-Level Atom: Resonance Polarization
(unpolarized lower level - no magnetic field - no collisions)

The ideal case of resonance polarization is obtained by neglecting in Eq. (10.8) both
the effect of the magnetic field and the effect of collisions. Setting in Eq. (10.8)

νL = C(0)
I (αuJu,α!J!) = C(0)

S (α!J!,αuJu) = D(K)(αuJu) = 0 ,

and substituting Eq. (10.9), we have1

ρK
Q (αuJu) =

√
3(2J! + 1)

B(α!J! → αuJu)
A(αuJu → α!J!)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) ρ

0
0(α!J!) . (10.10)

It is convenient to introduce the symbol w(K)
J
u

J
!

defined by2

w(K)
JuJ!

= (−1)1+J!+Ju

√
3(2Ju + 1)

{
1 1 K
Ju Ju J!

}
, (10.11)

1 Note that Eq. (10.10) is valid in an arbitrary reference system, since the magnetic field is
zero.
2 The symbol was first introduced by Landi Degl’Innocenti (1984).
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10.3. The Two-Level Atom: the Hanle Effect
(unpolarized lower level - no collisions)

The basic characteristics of the Hanle effect are obtained from Eq. (10.8) by retain-
ing the ‘magnetic’ term (first term in the denominator, which was set to zero in
the preceding section).1 In order to further simplify our treatment, we still neglect
– as in the preceding section – the effects of collisions (this matter is deferred until
Sect. 10.6). Using Eqs. (10.9) and (10.11), we can rewrite Eq. (10.8) in the form

ρK
Q (αuJu) =

√
2J! + 1
2Ju + 1

B(α!J! → αuJu)
A(αuJu → α!J!) + 2πi νL gα

u
J
u

Q

× w(K)
J
u

J
!

(−1)Q JK
−Q(ν0) ρ

0
0(α!J!) . (10.27)

We recall that the statistical tensors are defined in a reference system having the
z-axis in the magnetic field direction. Comparison with the corresponding expres-
sion obtained for the non-magnetic regime (Eq. (10.13)) shows that the effect of the
magnetic field is to reduce and dephase, via the imaginary term in the denominator,
all the multipole moments with Q $= 0. The efficiency of this relaxation process is
controlled by the dimensionless parameter Hu defined by

Hu =
2πνL gαuJu

A(αuJu → α!J!)
. (10.28)

This parameter is the quantum-mechanical analogue of the parameter H introduced
in the classical derivation of the Hanle effect (see Eq. (5.84)).2 Numerically, one
has (cf. Eq. (5.85))

Hu =
0.879 gα

u
J
u

B

A(αuJu → α!J!)
, (10.29)

where B is in G and A(αuJu → α!J!) in 107 s−1.
Using Hu, Eq. (10.27) can be expressed in the form

ρK
Q (αuJu) =

1
1 + i QHu

[
ρK

Q (αuJu)
]

B=0
, (10.30)

where [ρK
Q (αuJu)]B=0 are the multipole moments for the non-magnetic case (in

the presence of the same radiation field and defined in the same reference sys-
tem). Equation (10.30) summarizes the ‘essence’ of the Hanle effect. It shows
that coherences with Q = 0 (those connected with the populations of the Zeeman
sublevels, see Eq. (3.101)) are unaffected by the magnetic field, while those with

1 Note that we are still using the unpolarized lower level assumption and we are neglecting,
accordingly, stimulated emission effects.
2 The classical damping constant γ, defined in Eq. (5.28), has its obvious quantum-mechanical
counterpart in the Einstein coefficient A.
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the presence of the same radiation field and defined in the same reference sys-
tem). Equation (10.30) summarizes the ‘essence’ of the Hanle effect. It shows
that coherences with Q = 0 (those connected with the populations of the Zeeman
sublevels, see Eq. (3.101)) are unaffected by the magnetic field, while those with

1 Note that we are still using the unpolarized lower level assumption and we are neglecting,
accordingly, stimulated emission effects.
2 The classical damping constant γ, defined in Eq. (5.28), has its obvious quantum-mechanical
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ρKQ (αuJu) = e−iα cosα
[
ρKQ (αuJu)

]
B=0

cosα =

√
1

1 +Q2H2
u

tan−1 QHu

e.g.
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J!, Ju

ρKQ (α!J!) = ρ00(α!J!)δK0δQ0

STELLAR ATMOSPHERES 745

The assumptions made at the beginning of this section yield two basic simplifi-
cations in Eq. (14.2):
- because stimulation effects are neglected, the relaxation rate RS is zero;
- because lower-level polarization is neglected, the statistical tensors of the lower
level reduce to ρK

Q (α!J!) = ρ0
0(α!J!) δK0 δQ0. This implies that the only radiative

rate TA needed in Eq. (14.2) is TA(αuJuKQ,α!J! 0 0). Such rate is explicitly given
– in the atomic rest frame – by Eq. (10.9). Because of the assumption of complete
redistribution on velocities, the radiation field tensor JK

Q (ν0) in Eq. (10.9) has to be
replaced with the ‘average’ radiation field tensor J̄K

Q (ν0) given by Eq. (13.8). And
since the velocity distribution of the atoms is assumed to be Maxwellian, J̄K

Q (ν0)
is given by (cf. Eqs. (13.10) and (13.11))

J̄K
Q (ν0) =

∞∫

−∞

dν p(ν0 − ν) JK
Q (ν) , (14.5)

with

p(ν0 − ν) =
1√
π

1
∆νD

e
−
(ν0−ν

∆νD

)2
. (14.6)

Recalling the expression of the radiative rate RE (Eq. (7.14e)), we can rewrite
Eq. (14.2) in the form

d
dt

[
ρK

Q (αuJu)
]
$x

= −2πi νL gαuJu

∑

Q′

KK
QQ′

[
ρK

Q′(αuJu)
]
$x

−
[
A(αuJu → α!J!) + C(0)

S (α!J!,αuJu) + D(K)(αuJu)
][
ρK

Q (αuJu)
]
$x

+

√
2J! + 1
2Ju + 1

[
B(α!J! → αuJu)w(K)

J
u

J
!

(−1)QJ̄K
−Q(ν0)

+ δK0 δQ0 C(0)
I (αuJu,α!J!)

][
ρ0
0(α!J!)

]
$x

,

where the symbol w(K)
J
u

J
!

is given by Eq. (10.11).
Since the colliding particles have also a Maxwellian distribution of velocities, we

can apply the Einstein-Milne relation (Eq. (10.49)). Next we divide both members
by A(αuJu → α!J!) and introduce the usual notations (cf. Eqs. (10.51), (10.28))

ε =
C(0)

S (α!J!,αuJu)
A(αuJu → α!J!)

, δ(K)
u =

D(K)(αuJu)
A(αuJu → α!J!)

, Hu =
2πνL gαuJu

A(αuJu → α!J!)
. (14.7)

Recalling Eqs. (7.8) we obtain, for stationary situations
[
1 + ε+ δ(K)

u

][
ρK

Q (αuJu)
]
$x

+ iHu

∑

Q′

KK
QQ′

[
ρK

Q′(αuJu)
]
$x

=

=
c2

2hν3
0

√
2Ju + 1
2J! + 1

[
w(K)

JuJ!
(−1)QJ̄K

−Q(ν0) + δK0 δQ0 εBP(T )
][
ρ0
0(α!J!)

]
$x

, (14.8)

JK
Q (ν0) →

f(!x) → f(z) dtL = − kAL
∆νD

dz

tL: line optical depth

kA
L = kA

L

�
p(�0 � �)d�

= (kA
L p̄)��D
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symmetry axis
of the incident radiation

θ

χ

γ

Fig.10.6. The rotation R appearing in Eqs.(10.73) and (10.74) carries the reference system (XY Z)
into (xyz).

TA(αuJuKQ,α!J!K
′Q) = (2J! + 1)B(α!J! → αuJu)

×



 δKK′ (−1)1+J!+Ju

{
Ju Ju K
J! J! 1

}
J0

0 (ν0)

+ (−1)Q
√

15(2K + 1)(2K ′ + 1)






Ju J! 1
Ju J! 1
K K ′ 2






(
K K ′ 2
−Q Q 0

)
J2

0 (ν0)





RA(α!J!KQK ′Q) = (2J! + 1)B(α!J! → αuJu)

×



 δKK′
1

2J! + 1
J0

0 (ν0) + (−1)1−J
!
+J

u
+ Q
√

15(2K + 1)(2K ′ + 1)

×
{

K K ′ 2
J! J! J!

}{
1 1 2
J! J! Ju

}(
K K ′ 2
Q −Q 0

)
J2

0 (ν0)



 ,

and
KK

QQ′ =
∑

Q′′

DK
Q′′Q(R)∗ Q′′ DK

Q′′Q′(R) , (10.73)

R being the rotation which carries the reference system with the z-axis directed
along the magnetic field into the reference system with the z-axis directed along
the symmetry axis of the radiation field.

The expression of the kernel KK
QQ′ can be somewhat simplified. Referring to

Fig. 10.6, the rotation R is given, in terms of Euler angles, by

744 CHAPTER 14

θθ
Ω

χ

Ω

Ω

γ

χ

Fig.14.4. The fixed reference system Σ ≡ (xyz) used for the calculations of this section. At each
point P of the medium, the magnetic field vector is specified by the angles θB and χB . $ea($Ω)
and $eb(

$Ω) are the polarization unit vectors for the radiation flowing through P in the direction
$Ω ≡ (θ, χ).

−
∑

K′Q′

[
RE(αuJuKQK ′Q′) + RS(αuJuKQK ′Q′)

][
ρK′

Q′ (αuJu)
]
!x

+

√
2J" + 1
2Ju + 1

C(K)
I (αuJu,α"J")

[
ρK

Q (α"J")
]
!x

−
[
C(0)

S (α"J",αuJu) + D(K)(αuJu)
][
ρK

Q (αuJu)
]
!x

, (14.2)

where all the rates are evaluated at point #x, νL is the Larmor frequency at the
same point, and the kernel KK

QQ′ is explicitly given by Eq. (7.79),

KK
QQ′ =

∑

Q′′

DK
Q′′Q(RB)∗ Q′′ DK

Q′′Q′(RB) , (14.3)

RB being the rotation that carries the local ‘magnetic’ reference system (having
the z-axis aligned with the magnetic field) into the fixed reference system Σ. In
terms of Euler angles one simply has

RB ≡ (−γB,−θB,−χB) , (14.4)

where γB is an arbitrary angle that can be set to zero. The main properties and
the explicit expressions of the components of KK

QQ′ are given in App. 19.

!xed quantization axis
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possible atomic model, namely a two-level atom without hyperfine structure and
with unpolarized lower level. Consistently with the last assumption, we suppose
that the radiation field impinging on the atom is weak, in the sense that the average
number of photons per mode, n̄, is much smaller than unity, which allows one to
neglect stimulated emission.

We suppose that a collection of such atoms is distributed within a static medium
of arbitrary shape. In this medium the atoms interact with a magnetic field, !B,
and with a population of colliding particles having a Maxwellian distribution of
velocities characterized by the temperature T . The atoms have also a Maxwellian
distribution of velocities, such that the corresponding Doppler width of the absorp-
tion profile is ∆νD (in frequency units).

No restriction is made on the spatial variation of the temperature T of the col-
liders and of the magnetic field vector !B, as well as on the densities of the atoms
and of the colliders. However, we suppose for simplicity the Doppler width ∆νD
to be constant throughout the medium.

Furthermore, we suppose that the magnetic field is weak (in the sense that the
associated Larmor frequency νL is much smaller than∆νD) and that the inverse life-
time of the upper level, γu, is also much smaller than ∆νD, so that the flat-spectrum
approximation is satisfied.1 Finally, we adopt the approximation of complete redis-
tribution on velocities, which implies that at any point P of the medium the atom
can be described by a unique, velocity-independent density matrix that we denote
by [

ρK
Q (αJ)

]
!x

,

with (αJ) = (αuJu) for the upper level and (αJ) = (α"J") for the lower level, where
!x is the coordinate of point P.

Now we write the statistical equilibrium equation for the multipole moments of
the upper level. Such equation has already been written down explicitly in Chap. 10
(see Eq. (10.1)): however, Eq. (10.1) holds in a reference system with the z-axis
parallel to the magnetic field. Since in the present case the magnetic field vector
is allowed to vary in the medium, it is convenient to introduce a fixed reference
system Σ and to characterize the direction of the field at each point through the
angles θB and χB defined in Fig. 14.4. Then we have to transform Eq. (10.1) as
explained in Sect. 7.12. This leads to the following equation2

d
dt

[
ρK

Q (αuJu)
]
!x

= −2πi νL gαuJu

∑

Q′

KK
QQ′

[
ρK

Q′(αuJu)
]
!x

+
∑

K′Q′

TA(αuJuKQ,α"J"K
′Q′)

[
ρK′

Q′ (α"J")
]
!x

+

1 The applicability of the flat-spectrum approximation follows from the two inequalities
γu ! ∆νD and νL ! ∆νD. The latter obviously implies an upper limit on the magnetic field
intensities that can be handled by this formalism.
2 Note that the last two lines of Eq. (10.1) are not affected by a rotation of the reference
system because of the assumed isotropy of collisions.
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−
∑

K′Q′
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][
ρK′
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√
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C(K)
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[
ρK
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!x
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where all the rates are evaluated at point #x, νL is the Larmor frequency at the
same point, and the kernel KK

QQ′ is explicitly given by Eq. (7.79),

KK
QQ′ =

∑

Q′′

DK
Q′′Q(RB)∗ Q′′ DK

Q′′Q′(RB) , (14.3)

RB being the rotation that carries the local ‘magnetic’ reference system (having
the z-axis aligned with the magnetic field) into the fixed reference system Σ. In
terms of Euler angles one simply has

RB ≡ (−γB,−θB,−χB) , (14.4)

where γB is an arbitrary angle that can be set to zero. The main properties and
the explicit expressions of the components of KK

QQ′ are given in App. 19.

} collisions

rotation

absorption

emission stimulated emission

excitation

de-excitation de-polarization

SEE with !xed Z-axis



25

NON-EQUILIBRIUM ATOMIC PHYSICS 513

has J! = 0, since in that case ρ0
0(α!J!) is the only non-zero multipole moment (cf.

Eq. (3.101)).
Consider the statistical equilibrium equations for the upper level (Eq. (10.1))

under the assumption that Eq. (10.7) – the unpolarized lower level hypothesis –
is valid. In stationary situations, and neglecting the rate for stimulated emission,
we immediately get an analytical expression for ρK

Q (αuJu). Bearing in mind the
expression for RE (Eq. (7.14e)) we obtain

ρK
Q (αuJu) =

TA(αuJuKQ,α!J! 0 0) +
√

2J!+1
2Ju+1 C(0)

I (αuJu,α!J!) δK0 δQ0

2πi νL gα
u

J
u

Q + A(αuJu → α!J!) + C(0)
S (α!J!,αuJu) + D(K)(αuJu)

× ρ0
0(α!J!) , (10.8)

where, from Eq. (7.14a) and using Eqs. (2.26a) and (2.49)

TA(αuJuKQ,α!J! 0 0) =
√

3(2J! + 1) B(α!J! → αuJu)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) . (10.9)

In the following we will apply Eq. (10.8) to different physical regimes, characterized
by the relative order of magnitude of the different parameters.

10.2. The Two-Level Atom: Resonance Polarization
(unpolarized lower level - no magnetic field - no collisions)

The ideal case of resonance polarization is obtained by neglecting in Eq. (10.8) both
the effect of the magnetic field and the effect of collisions. Setting in Eq. (10.8)

νL = C(0)
I (αuJu,α!J!) = C(0)

S (α!J!,αuJu) = D(K)(αuJu) = 0 ,

and substituting Eq. (10.9), we have1

ρK
Q (αuJu) =

√
3(2J! + 1)

B(α!J! → αuJu)
A(αuJu → α!J!)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) ρ

0
0(α!J!) . (10.10)

It is convenient to introduce the symbol w(K)
J
u

J
!

defined by2

w(K)
JuJ!

= (−1)1+J!+Ju

√
3(2Ju + 1)

{
1 1 K
Ju Ju J!

}
, (10.11)

1 Note that Eq. (10.10) is valid in an arbitrary reference system, since the magnetic field is
zero.
2 The symbol was first introduced by Landi Degl’Innocenti (1984).
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RA(αJKQK ′Q′) = (2J + 1)
∑

αuJu

B(αJ → αuJu)

×
∑

KrQr

√
3(2K + 1)(2K ′ + 1)(2Kr + 1)

× (−1)1+J
u
−J+Kr+Q′

{
K K ′ Kr
J J J

}{
1 1 Kr
J J Ju

}(
K K ′ Kr
Q −Q′ Qr

)

× ζ+ J
Kr
Qr

(ναuJu, αJ) (7.14d)

RE(αJKQK ′Q′) = δKK′ δQQ′

∑

α
!
J

!

A(αJ → α"J") (7.14e)

RS(αJKQK ′Q′) = (2J + 1)
∑

α
!
J

!

B(αJ → α"J")

×
∑

KrQr

√
3(2K + 1)(2K ′ + 1)(2Kr + 1)

× (−1)1+J
!
−J+Q′

{
K K ′ Kr
J J J

}{
1 1 Kr
J J J"

}(
K K ′ Kr
Q −Q′ Qr

)

× ζ+ J
Kr
Qr

(ναJ, α!J!
) , (7.14f)

where1

ζ+ =
1
2

[
1 + (−1)K+K′+Kr

]
.

The equations above were first deduced by Bommier and Sahal-Bréchot (1978).
Bommier (1977) had formerly derived the corresponding equations in the standard
representation.

7.2.b Radiative Transfer Coefficients

The radiative transfer coefficients can be easily expressed in the spherical statistical
tensor representation. Using again Eq. (3.99) and writing Tqq′(i, %Ω) in terms of the
irreducible spherical tensor T K

Q (i, %Ω) via Eq. (5.156), we obtain from Eqs. (7.10)

ηA
i (ν, %Ω) =

hν

4π
N
∑

α!J!

∑

αuJu

(2J" + 1)B(α"J" → αuJu)

×
∑

KQK!Q!

√
3(2K + 1)(2K" + 1) ×

1 Note that the quantity ζ+ is 1 or 0 according as the integer (K + K ′ + Kr) is even or odd,
respectively.
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The assumptions made at the beginning of this section yield two basic simplifi-
cations in Eq. (14.2):
- because stimulation effects are neglected, the relaxation rate RS is zero;
- because lower-level polarization is neglected, the statistical tensors of the lower
level reduce to ρK

Q (α!J!) = ρ0
0(α!J!) δK0 δQ0. This implies that the only radiative

rate TA needed in Eq. (14.2) is TA(αuJuKQ,α!J! 0 0). Such rate is explicitly given
– in the atomic rest frame – by Eq. (10.9). Because of the assumption of complete
redistribution on velocities, the radiation field tensor JK

Q (ν0) in Eq. (10.9) has to be
replaced with the ‘average’ radiation field tensor J̄K

Q (ν0) given by Eq. (13.8). And
since the velocity distribution of the atoms is assumed to be Maxwellian, J̄K

Q (ν0)
is given by (cf. Eqs. (13.10) and (13.11))

J̄K
Q (ν0) =

∞∫

−∞

dν p(ν0 − ν) JK
Q (ν) , (14.5)

with

p(ν0 − ν) =
1√
π

1
∆νD

e
−
(ν0−ν

∆νD

)2
. (14.6)

Recalling the expression of the radiative rate RE (Eq. (7.14e)), we can rewrite
Eq. (14.2) in the form

d
dt

[
ρK

Q (αuJu)
]
$x

= −2πi νL gαuJu

∑

Q′

KK
QQ′

[
ρK

Q′(αuJu)
]
$x

−
[
A(αuJu → α!J!) + C(0)

S (α!J!,αuJu) + D(K)(αuJu)
][
ρK

Q (αuJu)
]
$x

+

√
2J! + 1
2Ju + 1

[
B(α!J! → αuJu)w(K)

J
u

J
!

(−1)QJ̄K
−Q(ν0)

+ δK0 δQ0 C(0)
I (αuJu,α!J!)

][
ρ0
0(α!J!)

]
$x

,

where the symbol w(K)
J
u

J
!

is given by Eq. (10.11).
Since the colliding particles have also a Maxwellian distribution of velocities, we

can apply the Einstein-Milne relation (Eq. (10.49)). Next we divide both members
by A(αuJu → α!J!) and introduce the usual notations (cf. Eqs. (10.51), (10.28))

ε =
C(0)

S (α!J!,αuJu)
A(αuJu → α!J!)

, δ(K)
u =

D(K)(αuJu)
A(αuJu → α!J!)

, Hu =
2πνL gαuJu

A(αuJu → α!J!)
. (14.7)

Recalling Eqs. (7.8) we obtain, for stationary situations
[
1 + ε+ δ(K)

u
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ρK

Q (αuJu)
]
$x

+ iHu
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Q′
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Q′(αuJu)
]
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=
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c2

2hν3
0

√
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w(K)

JuJ!
(−1)QJ̄K

−Q(ν0) + δK0 δQ0 εBP(T )
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ρ0
0(α!J!)

]
$x

, (14.8)

JK
Q (ν0) →

complete redistribution

emission and absorption

radiation !eld 
tensor

Einstein’s
A coefficient
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The assumptions made at the beginning of this section yield two basic simplifi-
cations in Eq. (14.2):
- because stimulation effects are neglected, the relaxation rate RS is zero;
- because lower-level polarization is neglected, the statistical tensors of the lower
level reduce to ρK

Q (α!J!) = ρ0
0(α!J!) δK0 δQ0. This implies that the only radiative

rate TA needed in Eq. (14.2) is TA(αuJuKQ,α!J! 0 0). Such rate is explicitly given
– in the atomic rest frame – by Eq. (10.9). Because of the assumption of complete
redistribution on velocities, the radiation field tensor JK

Q (ν0) in Eq. (10.9) has to be
replaced with the ‘average’ radiation field tensor J̄K

Q (ν0) given by Eq. (13.8). And
since the velocity distribution of the atoms is assumed to be Maxwellian, J̄K

Q (ν0)
is given by (cf. Eqs. (13.10) and (13.11))
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Recalling the expression of the radiative rate RE (Eq. (7.14e)), we can rewrite
Eq. (14.2) in the form
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where the symbol w(K)
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is given by Eq. (10.11).
Since the colliding particles have also a Maxwellian distribution of velocities, we

can apply the Einstein-Milne relation (Eq. (10.49)). Next we divide both members
by A(αuJu → α!J!) and introduce the usual notations (cf. Eqs. (10.51), (10.28))
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Recalling Eqs. (7.8) we obtain, for stationary situations
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has J! = 0, since in that case ρ0
0(α!J!) is the only non-zero multipole moment (cf.

Eq. (3.101)).
Consider the statistical equilibrium equations for the upper level (Eq. (10.1))

under the assumption that Eq. (10.7) – the unpolarized lower level hypothesis –
is valid. In stationary situations, and neglecting the rate for stimulated emission,
we immediately get an analytical expression for ρK

Q (αuJu). Bearing in mind the
expression for RE (Eq. (7.14e)) we obtain

ρK
Q (αuJu) =

TA(αuJuKQ,α!J! 0 0) +
√

2J!+1
2Ju+1 C(0)

I (αuJu,α!J!) δK0 δQ0

2πi νL gα
u

J
u

Q + A(αuJu → α!J!) + C(0)
S (α!J!,αuJu) + D(K)(αuJu)

× ρ0
0(α!J!) , (10.8)

where, from Eq. (7.14a) and using Eqs. (2.26a) and (2.49)

TA(αuJuKQ,α!J! 0 0) =
√

3(2J! + 1) B(α!J! → αuJu)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) . (10.9)

In the following we will apply Eq. (10.8) to different physical regimes, characterized
by the relative order of magnitude of the different parameters.

10.2. The Two-Level Atom: Resonance Polarization
(unpolarized lower level - no magnetic field - no collisions)

The ideal case of resonance polarization is obtained by neglecting in Eq. (10.8) both
the effect of the magnetic field and the effect of collisions. Setting in Eq. (10.8)

νL = C(0)
I (αuJu,α!J!) = C(0)

S (α!J!,αuJu) = D(K)(αuJu) = 0 ,

and substituting Eq. (10.9), we have1

ρK
Q (αuJu) =

√
3(2J! + 1)

B(α!J! → αuJu)
A(αuJu → α!J!)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) ρ

0
0(α!J!) . (10.10)

It is convenient to introduce the symbol w(K)
J
u

J
!

defined by2

w(K)
JuJ!

= (−1)1+J!+Ju

√
3(2Ju + 1)

{
1 1 K
Ju Ju J!

}
, (10.11)

1 Note that Eq. (10.10) is valid in an arbitrary reference system, since the magnetic field is
zero.
2 The symbol was first introduced by Landi Degl’Innocenti (1984).

with
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ε3(ν, #Ω) = εL
3

ρ−1 + ρ0 + ρ1

1
2

[
ρ−1φ1 − ρ1φ−1

]
cos θ , (10.48)

where εL is defined in Eq. (9.11) and the profiles φ−1, φ0, φ1 in Eq. (A13.10).
If the atom is unpolarized (ρ−1 = ρ0 = ρ1), Eqs. (10.48) reduce to Eqs. (9.10)

written for the transition (J! = 0, Ju = 1). In such case two remarkable spectral
properties hold: a) the frequency profile of ε0, ε1, ε2 is symmetrical about line cen-
ter, the frequency profile of ε3 is antisymmetrical; b) the integral over frequency of
ε1, ε2 and ε3 is zero. As obvious from Eqs. (10.48), none of these properties is any
longer valid if atomic polarization is present. In particular, the symmetry character-
istics of the profiles about line center are broken if the atom is oriented (ρ−1 "= ρ1).
The frequency-integrated linear polarization turns out to be proportional to the
amount of atomic alignment, the frequency-integrated circular polarization to the
amount of atomic orientation (cf. Table 3.6).

It should be remarked that the formal invariance of Eqs. (10.48) under the trans-
formation χ→ π+χ (rotation through 180◦ of the magnetic field vector about the
direction of the scattered radiation) does not mean that the scattered radiation is
unaffected by such transformation – this is only true when the atom is unpolarized.
In general, the populations ρ−1, ρ0, ρ1 depend on the angle θ′ (see Eqs. (10.47))
which is not invariant for χ→ π + χ.

10.6. The Two-Level Atom: the Role of Collisions
(unpolarized lower level)

Resonance polarization and the Hanle effect are deeply modified by the presence
of collisions. In this section we illustrate their effects for the two-level atom, under
the restrictive assumption that the lower level is unpolarized. Thus we refer again
to Eq. (10.8), and we recall that the collisional rates for inelastic and superelastic
collisions are connected by the Einstein-Milne relation (Eq. (7.98))

C(0)
I (αuJu,α!J!) =

2Ju + 1
2J! + 1

e
−

hν0
kB Tc C(0)

S (α!J!,αuJu) , (10.49)

since by assumption the colliding particles are characterized by a Maxwellian dis-
tribution of velocities with temperature Tc.

Substitution of Eq. (10.9) into Eq. (10.8) and use of Eqs. (7.8), (10.11) and
(10.28) yields

ρK
Q (αuJu) =

√
2J! + 1
2Ju + 1

B(α!J! → αuJu)
A(αuJu → α!J!)

×
εBP(Tc) δK0 δQ0 + w(K)

J
u

J
!

(−1)Q JK
−Q(ν0)

1 + i QHu + ε+ δ(K)
u

ρ0
0(α!J!) , (10.50)

Einstein-Milne relation

expression of SEE
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The assumptions made at the beginning of this section yield two basic simplifi-
cations in Eq. (14.2):
- because stimulation effects are neglected, the relaxation rate RS is zero;
- because lower-level polarization is neglected, the statistical tensors of the lower
level reduce to ρK

Q (α!J!) = ρ0
0(α!J!) δK0 δQ0. This implies that the only radiative

rate TA needed in Eq. (14.2) is TA(αuJuKQ,α!J! 0 0). Such rate is explicitly given
– in the atomic rest frame – by Eq. (10.9). Because of the assumption of complete
redistribution on velocities, the radiation field tensor JK

Q (ν0) in Eq. (10.9) has to be
replaced with the ‘average’ radiation field tensor J̄K

Q (ν0) given by Eq. (13.8). And
since the velocity distribution of the atoms is assumed to be Maxwellian, J̄K

Q (ν0)
is given by (cf. Eqs. (13.10) and (13.11))

J̄K
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∞∫
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with
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)2
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Recalling the expression of the radiative rate RE (Eq. (7.14e)), we can rewrite
Eq. (14.2) in the form

d
dt
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ρK
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]
$x

= −2πi νL gαuJu
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−
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][
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,

where the symbol w(K)
J
u

J
!

is given by Eq. (10.11).
Since the colliding particles have also a Maxwellian distribution of velocities, we

can apply the Einstein-Milne relation (Eq. (10.49)). Next we divide both members
by A(αuJu → α!J!) and introduce the usual notations (cf. Eqs. (10.51), (10.28))

ε =
C(0)

S (α!J!,αuJu)
A(αuJu → α!J!)

, δ(K)
u =

D(K)(αuJu)
A(αuJu → α!J!)

, Hu =
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Recalling Eqs. (7.8) we obtain, for stationary situations
[
1 + ε+ δ(K)

u
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Q (αuJu)
]
$x

+ iHu

∑

Q′
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QQ′

[
ρK

Q′(αuJu)
]
$x

=

=
c2
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√
2Ju + 1
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[
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where

BP(T ) =
2hν3

0

c2
e
−

hν0
kBT (14.9)

is the Planck function in the Wien limit (where stimulation effects are neglected).
In view of the following applications, it is convenient to rewrite Eq. (14.8) in

a more compact form by introducing suitable ‘source functions’ for the different
statistical tensors. Defining

SK
Q ("x ) =

2hν3
0

c2

√
2J" + 1
2Ju + 1

[
ρK

Q (αuJu)
]
#x[

ρ0
0(α"J")

]
#x

, (14.10)

Eq. (14.8) becomes
[
1 + ε+ δ(K)

u

]
SK

Q ("x ) + iHu

∑

Q′

KK
QQ′ SK

Q′("x ) =

= w(K)
JuJ!

(−1)QJ̄K
−Q(ν0) + δK0 δQ0 εBP(T ) . (14.11)

The quantities SK
Q ("x ) can be referred to as the irreducible components of the two-

level source function. They represent the obvious extension of the usual concept
of source function to the ‘polarized case’, as it is easily seen by considering the
(K = 0, Q = 0) component

S0
0("x ) =

2hν3
0

c2

√
2J" + 1
2Ju + 1

[
ρ0
0(αuJu)

]
#x[

ρ0
0(α"J")

]
#x

,

which, recalling Eq. (3.108), can be written as

S0
0("x ) =

2hν3
0

c2

2J" + 1
2Ju + 1

nα
u

J
u

nα!J!

, (14.12)

where nαuJu
and nα!J!

are the overall populations at point "x of the upper and
lower level, respectively. The last expression shows that S0

0("x ) is nothing but
the ‘classical’ source function for a two-level atom under the limit of negligible
stimulation effects. It should also be noticed that, according to Eq. (14.11), S0

0("x )
obeys the equation (see Eqs. (7.102), (14.7), (10.14) and (A19.2))

(1 + ε)S0
0("x ) = J̄0

0 (ν0) + εBP(T ) ,

or
S0

0("x ) = (1 − ε′) J̄0
0 (ν0) + ε′ BP(T ) , (14.13)

where

ε′ =
ε

1 + ε
=

C(0)
S (α"J",αuJu)

A(αuJu → α"J") + C(0)
S (α"J",αuJu)

.
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The assumptions made at the beginning of this section yield two basic simplifi-
cations in Eq. (14.2):
- because stimulation effects are neglected, the relaxation rate RS is zero;
- because lower-level polarization is neglected, the statistical tensors of the lower
level reduce to ρK

Q (α!J!) = ρ0
0(α!J!) δK0 δQ0. This implies that the only radiative

rate TA needed in Eq. (14.2) is TA(αuJuKQ,α!J! 0 0). Such rate is explicitly given
– in the atomic rest frame – by Eq. (10.9). Because of the assumption of complete
redistribution on velocities, the radiation field tensor JK

Q (ν0) in Eq. (10.9) has to be
replaced with the ‘average’ radiation field tensor J̄K

Q (ν0) given by Eq. (13.8). And
since the velocity distribution of the atoms is assumed to be Maxwellian, J̄K

Q (ν0)
is given by (cf. Eqs. (13.10) and (13.11))
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Recalling the expression of the radiative rate RE (Eq. (7.14e)), we can rewrite
Eq. (14.2) in the form
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where the symbol w(K)
J
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is given by Eq. (10.11).
Since the colliding particles have also a Maxwellian distribution of velocities, we

can apply the Einstein-Milne relation (Eq. (10.49)). Next we divide both members
by A(αuJu → α!J!) and introduce the usual notations (cf. Eqs. (10.51), (10.28))
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0("x ) is nothing but
the ‘classical’ source function for a two-level atom under the limit of negligible
stimulation effects. It should also be noticed that, according to Eq. (14.11), S0

0("x )
obeys the equation (see Eqs. (7.102), (14.7), (10.14) and (A19.2))

(1 + ε)S0
0("x ) = J̄0

0 (ν0) + εBP(T ) ,

or
S0

0("x ) = (1 − ε′) J̄0
0 (ν0) + ε′ BP(T ) , (14.13)

where

ε′ =
ε

1 + ε
=

C(0)
S (α"J",αuJu)

A(αuJu → α"J") + C(0)
S (α"J",αuJu)

.

,

with

where

kind of source function
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Equation (14.13) is the ‘classical’ expression relating the source function to the
angle and frequency averaged radiation field and to the Planck function.

We point out that the preceding equations (particularly Eqs. (14.8) and (14.13))
are basically the same as those derived in Sect. 10.6 (see Eqs. (10.50) and (10.52),
respectively). The only difference is that Eq. (10.50) holds in a reference system
where the atom is at rest and with the z-axis parallel to the magnetic field, whereas
Eq. (14.8) holds in the fixed reference system Σ of Fig. 14.4, the atoms being
characterized by an assigned velocity distribution and the magnetic field’s direction
by the angles θB, χB. This implies the appearance in Eq. (14.8) of the kernel KK

QQ′

and – because of the assumption of complete redistribution on velocities – of the
tensor J̄K

Q (ν0) in the place of JK
Q (ν0).

Consider now the radiative transfer equation. From Eq. (6.83) we have, neglecting
stimulated emission

d
ds

Ii(ν, %Ω) = −
3∑

j=0

KA
ij Ij(ν, %Ω) + εi (i = 0, . . . , 3) , (14.14)

where Ii(ν, %Ω) are the Stokes parameters of the radiation flowing through point %x in
the direction %Ω, defined with respect to the unit vectors %ea(%Ω), %eb(%Ω) of Fig. 14.4.
The radiative transfer coefficients are given by Eqs. (6.86) and (6.87). Their explicit
expressions for the case we are concerned with can be derived from Eqs. (7.15) by
modifying the Φ profiles according to Eq. (14.1). However, since we have assumed
that the magnetic field is weak (νL " ∆νD), we can use Eqs. (7.16) in the place
of Eqs. (7.15). The φ profile in the expressions of ηA

i and εi is a Voigt profile
centered at the transition frequency ν0, because the velocity distribution of the
atoms has been assumed to be Maxwellian. But since the inverse lifetime of the
upper level has also been supposed much smaller than ∆νD, the Voigt profile can
be approximated by the Gaussian profile p(ν0 − ν) of Eq. (14.6).1 On the other
hand, the assumption of unpolarized lower level implies that the summation over
K and Q in Eq. (7.16a) is restricted to K = Q = 0. And since T 0

0 (i, %Ω) = δi0 (see
Table 5.6), we obtain

ηA
i =

hν

4π
N (2J! + 1)B(α!J! → αuJu)

×
√

3 (−1)1+J
!
+J

u

{
1 1 0
J! J! Ju

}
ρ0
0(α!J!) p(ν0 − ν) δi0 ,

or, using Eqs. (2.36a), (10.6) and (9.5)

ηA
i = kA

L p(ν0 − ν) δi0 ,

1 It should be remarked that such substitution, based on the assumptions νL ! ∆νD and
γu ! ∆νD, implies the same order of approximation as the flat-spectrum approximation that we
have used to derive the statistical equilibrium equation.
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Ω

Fig.14.5. A ray with direction !Ω enters the medium at point !x0 , where its Stokes parameters
are I

(b)
i (ν, !Ω). At point !x, the Stokes parameters are given by Eq.(14.16).

where kA
L is the frequency-integrated absorption coefficient in the line,

kA
L =

hν

4π
N! B(α!J! → αuJu) , (14.15)

N! being the number density of atoms in the lower level. It can easily be seen
that the unpolarized lower level assumption also implies that the coefficients ρA

i
are identically zero. It follows that the propagation matrix is diagonal,

KA
ij = kA

L p(ν0 − ν) δij .

By similar arguments we obtain

εi = kA
L p(ν0 − ν)

∑

KQ

w(K)
JuJ!

T K
Q (i, 'Ω) SK

Q ('x ) ,

where the quantities w(K)
J
u

J
!

and SK
Q ('x ) are defined by Eqs. (10.11) and (14.10),

respectively.
Obviously, the preceding expressions imply that the only contribution to the

opacity and the emissivity of the medium comes from transitions between the two
levels of the model atom. The case where a source of continuum opacity (and
emissivity) is also present is formally more complicated and will not be treated
here.

Since the propagation matrix is diagonal, Eq. (14.14) reduces to a system of
four uncoupled equations whose solution can be expressed in terms of the scalar
attenuation operator of Eq. (8.16). Using Eq. (8.18) and referring to Fig. 14.5, we
can write the Stokes parameters at point 'x of the radiation at frequency ν flowing
along the direction 'Ω in the form

Ii(ν, 'Ω) =
"x∫

"x0

p(ν0 − ν) kA
L('x ′) e−τ

ν
("x,"x′) ∑

KQ

w(K)
JuJ!

T K
Q (i, 'Ω) SK

Q ('x ′) ds′

+ e−τ
ν
("x,"x0) I(b)

i (ν, 'Ω) , (14.16)
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has J! = 0, since in that case ρ0
0(α!J!) is the only non-zero multipole moment (cf.

Eq. (3.101)).
Consider the statistical equilibrium equations for the upper level (Eq. (10.1))

under the assumption that Eq. (10.7) – the unpolarized lower level hypothesis –
is valid. In stationary situations, and neglecting the rate for stimulated emission,
we immediately get an analytical expression for ρK

Q (αuJu). Bearing in mind the
expression for RE (Eq. (7.14e)) we obtain

ρK
Q (αuJu) =

TA(αuJuKQ,α!J! 0 0) +
√

2J!+1
2Ju+1 C(0)

I (αuJu,α!J!) δK0 δQ0

2πi νL gα
u

J
u

Q + A(αuJu → α!J!) + C(0)
S (α!J!,αuJu) + D(K)(αuJu)

× ρ0
0(α!J!) , (10.8)

where, from Eq. (7.14a) and using Eqs. (2.26a) and (2.49)

TA(αuJuKQ,α!J! 0 0) =
√

3(2J! + 1) B(α!J! → αuJu)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) . (10.9)

In the following we will apply Eq. (10.8) to different physical regimes, characterized
by the relative order of magnitude of the different parameters.

10.2. The Two-Level Atom: Resonance Polarization
(unpolarized lower level - no magnetic field - no collisions)

The ideal case of resonance polarization is obtained by neglecting in Eq. (10.8) both
the effect of the magnetic field and the effect of collisions. Setting in Eq. (10.8)

νL = C(0)
I (αuJu,α!J!) = C(0)

S (α!J!,αuJu) = D(K)(αuJu) = 0 ,

and substituting Eq. (10.9), we have1

ρK
Q (αuJu) =

√
3(2J! + 1)

B(α!J! → αuJu)
A(αuJu → α!J!)

× (−1)1+J!+Ju+Q

{
1 1 K
Ju Ju J!

}
JK
−Q(ν0) ρ

0
0(α!J!) . (10.10)

It is convenient to introduce the symbol w(K)
J
u

J
!

defined by2

w(K)
JuJ!

= (−1)1+J!+Ju

√
3(2Ju + 1)

{
1 1 K
Ju Ju J!

}
, (10.11)

1 Note that Eq. (10.10) is valid in an arbitrary reference system, since the magnetic field is
zero.
2 The symbol was first introduced by Landi Degl’Innocenti (1984).
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where

BP(T ) =
2hν3

0

c2
e
−

hν0
kBT (14.9)

is the Planck function in the Wien limit (where stimulation effects are neglected).
In view of the following applications, it is convenient to rewrite Eq. (14.8) in

a more compact form by introducing suitable ‘source functions’ for the different
statistical tensors. Defining

SK
Q ("x ) =

2hν3
0

c2

√
2J" + 1
2Ju + 1

[
ρK

Q (αuJu)
]
#x[

ρ0
0(α"J")

]
#x

, (14.10)

Eq. (14.8) becomes
[
1 + ε+ δ(K)

u

]
SK

Q ("x ) + iHu

∑

Q′

KK
QQ′ SK

Q′("x ) =

= w(K)
JuJ!

(−1)QJ̄K
−Q(ν0) + δK0 δQ0 εBP(T ) . (14.11)

The quantities SK
Q ("x ) can be referred to as the irreducible components of the two-

level source function. They represent the obvious extension of the usual concept
of source function to the ‘polarized case’, as it is easily seen by considering the
(K = 0, Q = 0) component

S0
0("x ) =

2hν3
0

c2

√
2J" + 1
2Ju + 1

[
ρ0
0(αuJu)

]
#x[

ρ0
0(α"J")

]
#x

,

which, recalling Eq. (3.108), can be written as

S0
0("x ) =

2hν3
0

c2

2J" + 1
2Ju + 1

nα
u

J
u

nα!J!

, (14.12)

where nαuJu
and nα!J!

are the overall populations at point "x of the upper and
lower level, respectively. The last expression shows that S0

0("x ) is nothing but
the ‘classical’ source function for a two-level atom under the limit of negligible
stimulation effects. It should also be noticed that, according to Eq. (14.11), S0

0("x )
obeys the equation (see Eqs. (7.102), (14.7), (10.14) and (A19.2))

(1 + ε)S0
0("x ) = J̄0

0 (ν0) + εBP(T ) ,

or
S0

0("x ) = (1 − ε′) J̄0
0 (ν0) + ε′ BP(T ) , (14.13)

where

ε′ =
ε

1 + ε
=

C(0)
S (α"J",αuJu)

A(αuJu → α"J") + C(0)
S (α"J",αuJu)

.
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Fig.14.5. A ray with direction !Ω enters the medium at point !x0 , where its Stokes parameters
are I

(b)
i (ν, !Ω). At point !x, the Stokes parameters are given by Eq.(14.16).

where kA
L is the frequency-integrated absorption coefficient in the line,

kA
L =

hν

4π
N! B(α!J! → αuJu) , (14.15)

N! being the number density of atoms in the lower level. It can easily be seen
that the unpolarized lower level assumption also implies that the coefficients ρA

i
are identically zero. It follows that the propagation matrix is diagonal,

KA
ij = kA

L p(ν0 − ν) δij .

By similar arguments we obtain

εi = kA
L p(ν0 − ν)

∑

KQ

w(K)
JuJ!

T K
Q (i, 'Ω) SK

Q ('x ) ,

where the quantities w(K)
J
u

J
!

and SK
Q ('x ) are defined by Eqs. (10.11) and (14.10),

respectively.
Obviously, the preceding expressions imply that the only contribution to the

opacity and the emissivity of the medium comes from transitions between the two
levels of the model atom. The case where a source of continuum opacity (and
emissivity) is also present is formally more complicated and will not be treated
here.

Since the propagation matrix is diagonal, Eq. (14.14) reduces to a system of
four uncoupled equations whose solution can be expressed in terms of the scalar
attenuation operator of Eq. (8.16). Using Eq. (8.18) and referring to Fig. 14.5, we
can write the Stokes parameters at point 'x of the radiation at frequency ν flowing
along the direction 'Ω in the form

Ii(ν, 'Ω) =
"x∫

"x0

p(ν0 − ν) kA
L('x ′) e−τ

ν
("x,"x′) ∑

KQ

w(K)
JuJ!

T K
Q (i, 'Ω) SK

Q ('x ′) ds′

+ e−τ
ν
("x,"x0) I(b)

i (ν, 'Ω) , (14.16)
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where I(b)
i (ν, "Ω) is the Stokes vector of the radiation entering the medium at point

"x0 along the direction "Ω, s′ is the coordinate of "x ′ reckoned along "Ω (s′ = |"x ′−"x0|),
and τν("x, "x ′) is the optical depth at frequency ν between points "x and "x ′,

τν("x, "x ′) =
"x∫

"x′

p(ν0 − ν) kA
L("x ′′) ds′′ . (14.17)

From Eq. (14.16) it is now possible to find the expression for the radiation field
tensor at point "x. Using Eqs. (14.5) and (5.157) we obtain two contributions,
arising from the two terms in the right-hand side of Eq. (14.16). We can write

J̄K
Q (ν0) =

[
J̄K

Q (ν0)
]
I

+
[
J̄K

Q (ν0)
]
E

, (14.18)

where the ‘internal’ part [J̄K
Q (ν0)]I is given by

[
J̄K

Q (ν0)
]
I
=

∞∫

−∞

dν p(ν0 − ν)
∮

dΩ
4π

3∑

i=0

T K
Q (i, "Ω)

"x∫

"x0

ds′ p(ν0 − ν)

× kA
L("x ′) e−τ

ν
("x,"x′) ∑

K′Q′

w(K′)
J
u

J
"
T K′

Q′ (i, "Ω) SK′

Q′ ("x ′) , (14.19)

and the ‘external’ part [J̄K
Q (ν0)]E, originating from the boundary conditions, by

[
J̄K

Q (ν0)
]
E

=
∞∫

−∞

dν p(ν0 − ν)
∮

dΩ
4π

3∑

i=0

T K
Q (i, "Ω) e−τ

ν
("x,"x0) I(b)

i (ν, "Ω) . (14.20)

Equation (14.19) can be cast in a simpler form by changing the double integral in
dΩ and ds′ into a volume integral. Since

d3"x ′ = ("x − "x ′)2 dΩ ds′ , (14.21)

we get

[
J̄K

Q (ν0)
]
I
=

∞∫

−∞

dν [p(ν0 − ν)]2
∫

d3"x ′ kA
L("x ′) e−τν("x,"x′)

4π("x − "x ′)2

×
3∑

i=0

T K
Q (i, "Ω)

∑

K′Q′

w(K′)
JuJ"

T K′

Q′ (i, "Ω) SK′

Q′ ("x ′) . (14.22)

Finally, we can substitute the expression of the radiation field tensor at point "x
into the statistical equilibrium equation. From Eqs. (14.11), (14.18), and (14.22)

d

ds
Ii(s) = ηAI ("x)Ii(s) + εi("x) (i = 0, . . . , 3)

where

�A
I (�x) = kA

L (�x) p(�0 � �)

�i(�x) = kA
L (�x) p(�0 � �)

�

KQ

w(K)

JuJ�
T K

Q (i, ��)SK
Q (�x)

internal

external
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where I(b)
i (ν, "Ω) is the Stokes vector of the radiation entering the medium at point

"x0 along the direction "Ω, s′ is the coordinate of "x ′ reckoned along "Ω (s′ = |"x ′−"x0|),
and τν("x, "x ′) is the optical depth at frequency ν between points "x and "x ′,

τν("x, "x ′) =
"x∫

"x′

p(ν0 − ν) kA
L("x ′′) ds′′ . (14.17)

From Eq. (14.16) it is now possible to find the expression for the radiation field
tensor at point "x. Using Eqs. (14.5) and (5.157) we obtain two contributions,
arising from the two terms in the right-hand side of Eq. (14.16). We can write

J̄K
Q (ν0) =

[
J̄K

Q (ν0)
]
I

+
[
J̄K

Q (ν0)
]
E

, (14.18)

where the ‘internal’ part [J̄K
Q (ν0)]I is given by

[
J̄K

Q (ν0)
]
I
=

∞∫

−∞

dν p(ν0 − ν)
∮

dΩ
4π

3∑

i=0

T K
Q (i, "Ω)

"x∫

"x0

ds′ p(ν0 − ν)

× kA
L("x ′) e−τ

ν
("x,"x′) ∑

K′Q′

w(K′)
J
u

J
"
T K′

Q′ (i, "Ω) SK′

Q′ ("x ′) , (14.19)

and the ‘external’ part [J̄K
Q (ν0)]E, originating from the boundary conditions, by

[
J̄K

Q (ν0)
]
E

=
∞∫

−∞

dν p(ν0 − ν)
∮

dΩ
4π

3∑

i=0

T K
Q (i, "Ω) e−τ

ν
("x,"x0) I(b)

i (ν, "Ω) . (14.20)

Equation (14.19) can be cast in a simpler form by changing the double integral in
dΩ and ds′ into a volume integral. Since

d3"x ′ = ("x − "x ′)2 dΩ ds′ , (14.21)

we get

[
J̄K

Q (ν0)
]
I
=

∞∫

−∞

dν [p(ν0 − ν)]2
∫

d3"x ′ kA
L("x ′) e−τν("x,"x′)

4π("x − "x ′)2

×
3∑

i=0

T K
Q (i, "Ω)

∑

K′Q′

w(K′)
JuJ"

T K′

Q′ (i, "Ω) SK′

Q′ ("x ′) . (14.22)

Finally, we can substitute the expression of the radiation field tensor at point "x
into the statistical equilibrium equation. From Eqs. (14.11), (14.18), and (14.22)
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and the ‘external’ part [J̄K
Q (ν0)]E, originating from the boundary conditions, by

[
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Q (ν0)
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E

=
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=
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Finally, we can substitute the expression of the radiation field tensor at point "x
into the statistical equilibrium equation. From Eqs. (14.11), (14.18), and (14.22)
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into the statistical equilibrium equation. From Eqs. (14.11), (14.18), and (14.22)
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From Eq. (14.16) it is now possible to find the expression for the radiation field
tensor at point "x. Using Eqs. (14.5) and (5.157) we obtain two contributions,
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where the ‘internal’ part [J̄K
Q (ν0)]I is given by

[
J̄K

Q (ν0)
]
I
=

∞∫

−∞

dν p(ν0 − ν)
∮

dΩ
4π

3∑

i=0

T K
Q (i, "Ω)

"x∫

"x0

ds′ p(ν0 − ν)

× kA
L("x ′) e−τ
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and the ‘external’ part [J̄K
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we obtain
[
1 + ε+ δ(K)

u

]
SK

Q (#x ) + iHu

∑

Q′

KK
QQ′ SK

Q′(#x ) =

= δK0 δQ0 εBP(T ) + w(K)
JuJ!

(−1)Q
[
J̄K
−Q(ν0)

]
E

+
∫

d3#x ′ kA
L(#x ′)

4π(#x − #x ′)2
∑

K′Q′

GKQ,K′Q′(#x, #x ′) SK′

Q′ (#x ′) , (14.23)

where

GKQ,K′Q′(#x, #x ′) =
∞∫

−∞

dν
[
p(ν0 − ν)

]2 e−τν("x,"x′)

× w(K)
JuJ!

w(K′)
JuJ!

3∑

i=0

(−1)Q T K
−Q(i, #Ω) T K′

Q′ (i, #Ω) . (14.24)

The quantities GKQ,K′Q′(#x, #x ′) appearing in this equation can be expressed in
terms of Wigner symbols and of rotation matrices. Details are given in App. 20.
From the physical point of view, they represent a numerical factor which weights the
amount of coupling between the statistical tensor ρK

Q at point #x and the statistical
tensor ρK′

Q′ at point #x ′. For this reason, they can be referred to as multipole coupling
coefficients .

Equation (14.23) is a system of linear, non-homogeneous, integral equations in the
unknowns SK

Q (#x ), the irreducible components of the source function, which can in
principle be solved once the properties of the medium and the boundary conditions
are specified. When the values of these components are known at each point, the
Stokes parameters of the radiation emerging from the medium can be computed
by applying Eq. (14.16). It should be remarked that, owing to property (A20.8)
of the multipole coupling coefficients, Eq. (14.23) decouples in two different sets
of equations involving, respectively, the components with K = 0, 2 and those with
K = 1. In the latter set, the only source term is [J̄1

−Q(ν0)]E, which vanishes unless
the boundary radiation field, once integrated in frequency according to Eq. (14.20),
has some contribution from circular polarization. Excluding this case of limited
interest, all the components S1

Q(#x ) are everywhere zero in the medium.
It is especially interesting to study Eq. (14.23) in the particular case of a plane-

parallel, semi-infinite stellar atmosphere. In this case all the physical quantities of
the medium depend on a single coordinate, the height in the atmosphere, that we
assume as the z-axis of our reference system Σ. As a consequence, the irreducible
components of the source function depend only on the height z. Introducing the
line optical depth tL through the equation (cf. Eqs. (9.34))

dtL = − kA
L

∆νD
dz , (14.25)
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and assuming that the stellar atmosphere is not illuminated by external sources of
radiation, Eq. (14.23) takes the form
[
1 + ε+ δ(K)

u

]
SK

Q (tL) + iHu

∑

Q′

KK
QQ′ SK

Q′(tL) = δK0 δQ0 εBP(T )

+
∞∫

0

dt′L

∞∫

−∞

dx′
∞∫

−∞

dy′ ∆νD
4π(&x − &x ′)2

∑

K′=0,2

∑

Q′

GKQ,K′Q′(&x, &x ′) SK′

Q′ (t′L) , (14.26)

where the indices K and K ′ are restricted to the values 0 and 2. The integral
over x′ and y′ can be performed by introducing cylindrical coordinates. These
calculations, that are developed in detail in App. 21, restrict the summation over
Q′ in the last term of Eq. (14.26) to the single value Q′ = Q and lead to the
following equation

[
1 + ε+ δ(K)

u

]
SK

Q (tL) + iHu

∑

Q′

KK
QQ′ SK

Q′(tL) =

= δK0 δQ0 εBP(T ) +
∑

K′=0,2

∞∫

0

GKQ,K′Q

(
|t′L − tL|

)
SK′

Q (t′L) dt′L , (14.27)

where we have introduced the multipolar kernels GKQ,K′Q defined by

GKQ,K′Q

(
|t′L − tL|

)
=

∞∫

−∞

dx′
∞∫

−∞

dy′ ∆νD
4π(&x − &x ′)2

GKQ,K′Q(&x, &x ′) . (14.28)

These quantities are real and satisfy the symmetry properties (cf. Eqs. (A20.5)
and (A20.6))

GK′Q,KQ(x) = GK −Q,K′ −Q(x) = GKQ,K′Q(x) . (14.29)

The explicit expressions of the multipolar kernels appearing in Eq. (14.27) can be
derived from Eqs. (A21.8), (A21.7) and (A20.11). We obtain

G00,00(x) =
1
2

∞∫

−∞

dv
[
ϕ(v)
]2

E1

(
xϕ(v)

)

G00,20(x) =
1

4
√

2
w(2)

J
u

J
!

∞∫

−∞

dv
[
ϕ(v)
]2 [3E3

(
xϕ(v)

)
− E1

(
xϕ(v)

)]

G20,20(x) =
1
8

W2(J!, Ju)
∞∫

−∞

dv
[
ϕ(v)
]2 [5E1

(
xϕ(v)

)
−12E3

(
xϕ(v)

)
+9E5

(
xϕ(v)

)]

G21,21(x) =
3
8

W2(J!, Ju)
∞∫

−∞

dv
[
ϕ(v)
]2 [

E1

(
xϕ(v)

)
+ E3

(
xϕ(v)

)
− 2E5

(
xϕ(v)

)]
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Fig.14.6. The multipolar kernels defined in Eqs.(14.30) are plotted as a function of x for the
transition (J! = 0, Ju = 1). The curves are labelled according to the following code: 1) G00,00;
2) G00,20; 3) G20,20; 4) G21,21; 5) G22,22. Note the sign change of curve 2 which occurs at x =
0.75125.

by applying Eq. (14.16) to the case of a plane-parallel atmosphere. This gives,
setting µ = cos θ

Ii(ν, #Ω) =
∞∫

0

ϕ(v) e−
tL ϕ(v)

µ
∑

K=0,2

∑

Q

w(K)
J
u

J
!
T K

Q (i, #Ω) SK
Q (tL)

dtL
µ

,

or, introducing the variable τν = tL ϕ(v)/µ

Ii(ν, #Ω) =
∑

K=0,2

∑

Q

w(K)
J
u

J
!
T K

Q (i, #Ω)
∞∫

0

e−τν SK
Q

( µ τν
ϕ(v)

)
dτν . (14.33)

In particular, for the radiation emerging along a direction #Ω‖ parallel to the stellar
surface one has, by considering the limit µ → 0

Ii(ν, #Ω‖) =
∑

K=0,2

∑

Q

w(K)
JuJ!

T K
Q (i, #Ω‖) SK

Q (0) . (14.34)

Since under this limit the irreducible components of the source function appearing
in Eq. (14.33) become independent of optical depth, the Stokes parameters of the
emerging radiation turn out to be independent of frequency. This is not the case
when continuum opacity is taken into account (see Sect. 14.7).

Particularly important for the theory of radiative transfer of polarized radiation
is the special case of Eq. (14.27) which is obtained by setting Hu = δ(K)

u = 0 and by
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emerging radiation turn out to be independent of frequency. This is not the case
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Particularly important for the theory of radiative transfer of polarized radiation
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Fig.14.8. The emerging profiles of the intensity (normalized to BP) and of the ratio Q/I – left
and right panel, respectively – corresponding to the irreducible components of the source function
shown in Fig.14.7. The profiles, obtained from Eq.(14.33) for a heliocentric angle θ = 84◦.3
(µ = 0.1), are plotted against the reduced frequency (ν0 − ν)/∆νD. The positive Q direction is
parallel to the stellar surface.

Fig.14.9. Limb-darkening curve for the fractional polarization at line center, corresponding to the
irreducible components of the source function of Fig.14.7.

0.09063 and 0.09061, respectively. These values are in agreement with the result
of Ivanov et al. (1997), who give for p‖ the asymptotic expression

p‖ = 0.09443− 0.3805
√
ε′ .

Apart from the special case of Eqs. (14.35), it is important to remark that
Eq. (14.27) holds without any limitation on the optical depth variation of the
different parameters. The quantities ε, δ(K)

u , Hu, BP(T ), θB, and χB, which appear
either explicitly or implicitly (through the kernel KK

QQ′) in this equation, can be
arbitrary functions of optical depth. A full analysis of the solution of Eq. (14.27) for
different atomic transitions and for different values (and depth dependence) of the

756 CHAPTER 14

Fig.14.8. The emerging profiles of the intensity (normalized to BP) and of the ratio Q/I – left
and right panel, respectively – corresponding to the irreducible components of the source function
shown in Fig.14.7. The profiles, obtained from Eq.(14.33) for a heliocentric angle θ = 84◦.3
(µ = 0.1), are plotted against the reduced frequency (ν0 − ν)/∆νD. The positive Q direction is
parallel to the stellar surface.

Fig.14.9. Limb-darkening curve for the fractional polarization at line center, corresponding to the
irreducible components of the source function of Fig.14.7.
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