Radiation transport and polarized line profile formation

M. Goto, NIFS

intuitive understanding

- two level atom ($J_{\ell}=0$ and $J_{u}=1$) is taken as example
- density matrix is set up for atoms under anisotropic irradiation (incoherent)
- rotation of coordinate gives rise to coherence between magnetic sublevels
- equation of motion due to magnetic field perturbation is solved for density matrix
- Stokes parameters are derived from density matrix

anisotropic photo-excitation

- unpolarized σ-light can be understood to consist of incoherent two circularly polarized lights \uparrow^{z}
- excitation gives rise to anisotropic excited level

$$
\Delta \rho=\frac{1}{2}\left(\begin{array}{lll}
M_{u}=+1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)_{-1}^{+1}
$$

- there is no coherence (non-diagonal component) at this moment
- coordinates are rotated so that quantization axis points to \boldsymbol{B} direction

$$
\begin{gathered}
\rho_{z}=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\sqrt{7} \\
\rho_{x}=\frac{1}{4}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)
\end{gathered}
$$

radiation

x^{\prime} radiation

- coherence appears between $M=+1$ and $M=-1$ states

role of magnetic field

- equation of motion for density matrix

$$
i \hbar \frac{\partial}{\partial t} \rho_{x}=\left[H_{F}, \rho_{x}\right]
$$

- Hamiltonian H_{F} consists of perturbation due to magnetic field

$$
\begin{aligned}
\langle M| H_{F}|N\rangle & =-\mu_{\mathrm{B}} g_{j} B\langle M| J_{x}|N\rangle \\
& =-\mu_{\mathrm{B}} g_{j} B M \delta_{M N} \\
& =-\hbar \omega_{0} M \delta_{M N}
\end{aligned}
$$

- μ_{B} and g_{\lrcorner}are Bohr magneton and Landé g-factor, respectively, and ω_{0} corresponds to Larmor angular frequency
- H_{F} is explicitly written as

$$
H_{\mathrm{F}}=-\hbar \omega_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

- right hand side of equation of motion is calculated as

equation of motion

$i \hbar \frac{\partial}{\partial t} \rho_{x}=\left[H_{F}, \rho_{x}\right]$
$i \hbar \frac{\partial}{\partial t}\left(\begin{array}{ccc}\rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1}\end{array}\right)=-\hbar \omega_{0}\left(\begin{array}{ccc}0 & \rho_{10} & 2 \rho_{1-1} \\ -\rho_{01} & 0 & \rho_{0-1} \\ -2 \rho_{-11} & -\rho_{-10} & 0\end{array}\right)$
with $\rho_{x}(0)=\frac{1}{4}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)$

- $\rho_{x}(t)$ is readily obtained with initial condition

$$
\rho_{x}(t)=\frac{1}{4}\left(\begin{array}{ccc}
1 & 0 & \mathrm{e}^{2 i \omega t} \\
0 & 2 & 0 \\
\mathrm{e}^{-2 i \omega t} & 0 & 1
\end{array}\right)
$$

- line intensity is derived from density matrix obtained

line intensity

$\left.I_{M_{u} M_{\ell}}^{q}=C_{D}\left|\left\langle u J_{u} M_{u}\right| d_{q}\right| \ell J_{\ell} M_{\ell}\right\rangle\left.\right|^{2}$

$$
\left.I_{u \ell}^{q}=C_{D} \sum_{M_{u}, M_{\ell}} w_{M_{u}}\left|\left\langle u J_{u} M_{u}\right| d_{q}\right| \ell J_{\ell} M_{\ell}\right\rangle\left.\right|^{2}
$$

spherical components

- measurable intensity is summation over all combinations of magnetic sublevels

linear polarization components

$$
\begin{aligned}
& d_{q} \rightarrow d_{x} \text { and } d_{y} \quad \begin{array}{l}
d_{x}=\frac{1}{\sqrt{2}}\left(d_{-1}-d_{1}\right) \\
d_{y}=\frac{\mathrm{i}}{\sqrt{2}}\left(d_{-1}+d_{1}\right) \\
I_{u \ell}^{x}=\frac{C_{\mathrm{D}}}{2} \sum_{M_{u}^{\prime}, M_{u}^{\prime \prime}, M_{\ell}}\left\langle u J_{u} M_{u}^{\prime}\right| \rho_{u}\left|u J_{u} M_{u}^{\prime \prime}\right\rangle \\
\quad \times\left\langle u J_{u} M_{u}^{\prime \prime}\right| d_{-1}-d_{1}\left|\ell J_{\ell} M_{\ell}\right\rangle\left\langle\ell J_{\ell} M_{\ell}\right| d_{-1}^{\dagger}-d_{1}^{\dagger}\left|u J_{u} M_{u}^{\prime}\right\rangle \\
I_{u \ell}^{y}=\frac{C_{\mathrm{D}}}{2} \sum_{M_{u}^{\prime}, M_{u}^{\prime \prime}, M_{\ell}}\left\langle u J_{u} M_{u}^{\prime}\right| \rho_{u}\left|u J_{u} M_{u}^{\prime \prime}\right\rangle \\
\\
\quad \times\left\langle u J_{u} M_{u}^{\prime \prime}\right| d_{-1}+d_{1}\left|\ell J_{\ell} M_{\ell}\right\rangle\left\langle\ell J_{\ell} M_{\ell}\right| d_{-1}^{\dagger}+d_{1}^{\dagger}\left|u J_{u} M_{u}^{\prime}\right\rangle
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
I_{u \ell}^{x}=\frac{C_{D}}{12}(1-\cos 2 \omega t)|\langle u 1\|\mathbf{d}\| \ell 0\rangle|^{2} \times \exp \left(-A_{\alpha \beta} t\right) \\
I_{u \ell}^{y}=\frac{C_{D}}{12}(1+\cos 2 \omega t)|\langle u 1\|\mathbf{d}\| \ell 0\rangle|^{2} \times \exp \left(-A_{a \beta} t\right) \\
\downarrow=\frac{e}{2 m} g j B
\end{gathered}
$$

radiation

statistical equilibrium equations

- density matrix and Stokes parameters are derived following "Polarization in Spectral Lines" by E. Landi Degl'Innocenti and M. Landolfi
- correspondence to the intuitive method of the results is considered

equation of motion

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho=\frac{2 \pi}{\mathrm{i} h}[H, \rho]
$$

- Hamiltonian can involve atomic processes in addition to magnetic field

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{\alpha J}\left(M, M^{\prime}\right)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha J}\left(M-M^{\prime}\right) \rho_{\alpha J}\left(M, M^{\prime}\right) \\
+\sum_{\alpha_{\ell} J_{\ell}} \sum_{M_{\ell} M_{\ell}^{\prime}} \rho_{\alpha_{\ell} J_{\ell}}\left(M_{\ell}, M_{\ell}^{\prime}\right) T_{\mathrm{A}}\left(\alpha J M M^{\prime}, \alpha_{\ell} J_{\ell} M_{\ell} M_{\ell}^{\prime}\right) \\
+\sum_{\alpha_{u} J_{u}} \sum_{M_{u} M_{u}^{\prime}} \rho_{\alpha_{u} J_{u}}\left(M_{u}, M_{u}^{\prime}\right) & {\left[T_{\mathrm{E}}\left(\alpha J M M^{\prime}, \alpha_{u} J_{u} M_{u} M_{u}^{\prime}\right)\right.} \\
& \left.+T_{\mathrm{S}}\left(\alpha J M M^{\prime}, \alpha_{u} J_{u} M_{u} M_{u}^{\prime}\right)\right] \\
-\sum_{M^{\prime \prime}}\left\{\rho_{\alpha J}\left(M, M^{\prime \prime}\right)[\right. & {\left[R_{\mathrm{A}}\left(\alpha J M^{\prime} M^{\prime \prime}\right)+R_{\mathrm{E}}\left(\alpha J M^{\prime \prime} M^{\prime}\right)\right.} \\
& \left.+R_{\mathrm{S}}\left(\alpha J M^{\prime \prime} M^{\prime}\right)\right]
\end{array}\right\} \begin{aligned}
+\rho_{\alpha J}\left(M^{\prime \prime}, M^{\prime}\right) & {\left[R_{\mathrm{A}}\left(\alpha J M^{\prime \prime} M\right)+R_{\mathrm{E}}\left(\alpha J M M^{\prime \prime}\right)\right.} \\
& \left.\left.+R_{\mathrm{S}}\left(\alpha J M M^{\prime \prime}\right)\right]\right\}
\end{aligned}
$$

quantization axis in
B direction

standard
 representation

spherical tensors

- spherical representation of density matrix is obtained from standard matrix as

$$
\begin{aligned}
& \rho_{Q}^{K}(\alpha J, \alpha J) \\
& =\sum_{M M^{\prime}}(-1)^{J-M} \sqrt{2 K+1}(\alpha J) \\
& \left(\begin{array}{ccc}
J & J & K \\
M & -M^{\prime} & -Q
\end{array}\right) \rho_{\alpha J}\left(M, M^{\prime}\right)
\end{aligned}
$$

where $K=0,1, \ldots, 2 J$ and $Q=-K, \ldots, K$

- the transformation is understood as change of matrix basis, e.g., for $J=1 / 2$

$$
\begin{aligned}
\rho_{\alpha J}\left(M, M^{\prime}\right) & :\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\rho_{Q}^{K}(\alpha J) & :\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

advantages

- standard representation requires two rotation matrices in rotation of coordinates,

$$
\left[\rho_{\alpha J}\left(M, M^{\prime}\right)\right]_{\text {new }}=\sum_{N N^{\prime}} \mathcal{D}_{N M}^{J}(R)^{*} \mathcal{D}_{N^{\prime} M^{\prime}}^{J}(R)\left[\rho_{\alpha J}\left(N, N^{\prime}\right)\right]_{\text {old }}
$$

while spherical representation needs just one rotation matrix

$$
\left[\rho_{Q}^{K}\left(\alpha J, \alpha^{\prime} J^{\prime}\right)\right]_{\mathrm{new}}=\sum_{Q^{\prime}}\left[\rho_{Q^{\prime}}^{K}\left(\alpha J, \alpha^{\prime} J^{\prime}\right)\right]_{\mathrm{old}} \underline{\mathcal{D}_{Q^{\prime} Q^{\prime}}^{K}(R)^{*}}
$$

- many components vanish when there exists some symmetry

spherical representation

- multiplying both sides in equation of motion by

$$
(-1)^{J-M} \sqrt{2 K+1}\left(\begin{array}{ccc}
J & J & K \\
M & -M^{\prime} & -Q
\end{array}\right)
$$

and carrying out summation over M and M^{\prime} give

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{Q}^{K}(\alpha J)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha J} Q \rho_{Q}^{K}(\alpha J)
$$

quantization axis in B direction

$$
-\sum_{K^{\prime} Q^{\prime}} \rho_{Q^{\prime}}^{K^{\prime}}(\alpha J)\left[\mathbb{R}_{\mathrm{A}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)+\mathbb{R}_{\mathrm{E}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)\right.
$$

$$
\left.+\mathbb{R}_{\mathrm{S}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)\right]
$$

$$
\begin{aligned}
& +\sum_{\alpha_{\ell} J_{\ell}} \sum_{K_{\ell} Q_{\ell}} \rho_{Q_{\ell}}^{K_{\ell}}\left(\alpha_{\ell} J_{\ell}\right) \mathbb{T}_{\mathrm{A}}\left(\alpha J K Q, \alpha_{\ell} J_{\ell} K_{\ell} Q_{\ell}\right)+ \\
& +\sum_{\alpha_{u} J_{u}} \sum_{K_{u} Q_{u}} \rho_{Q_{u}}^{K_{u}}\left(\alpha_{u} J_{u}\right)\left[\mathbb{T}_{\mathrm{E}}\left(\alpha J K Q, \alpha_{u} J_{u} K_{u} Q_{u}\right)\right. \\
& \left.+\mathbb{T}_{\mathrm{S}}\left(\alpha J K Q, \alpha_{u} J_{u} K_{u} Q_{u}\right)\right]
\end{aligned}
$$

two-level atom

- upper level

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} Q \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)
$$

$$
+\sum_{K^{\prime} Q^{\prime}} \mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} K^{\prime} Q^{\prime}\right) \rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{\ell} J_{\ell}\right)
$$

$$
-\sum_{K^{\prime} Q^{\prime}} \frac{\left[\mathbb{R}_{\mathrm{E}}\left(\alpha_{u} J_{u} K Q K^{\prime} Q^{\prime}\right)\right.}{\int \delta_{K K^{\prime}} \delta_{Q Q^{\prime}} \sum A\left(\alpha J \rightarrow \alpha_{\ell} J_{\ell}\right)}+\frac{\mathbb{R}_{\mathrm{S}}\left(\alpha_{u} J_{u} K Q K^{\prime} Q^{\prime}\right)}{\rightarrow \text { ignored }}
$$

- lower level

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \rho_{Q}^{K}\left(\alpha_{\ell} J_{\ell}\right)=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{\ell} J_{\ell}} Q \rho_{Q}^{K}\left(\alpha_{\ell} J_{\ell}\right) \\
& \\
& \\
& \\
& \quad+\sum_{K^{\prime} Q^{\prime}}\left[\mathbb{T}_{\mathrm{E}}\left(\alpha_{\ell} J_{\ell} K Q, \alpha_{u} J_{u} K^{\prime} Q^{\prime}\right)+\mathbb{T}_{\mathrm{S}}\left(\alpha_{\ell} J_{\ell} K Q, \alpha_{u} J_{u} K^{\prime} Q^{\prime}\right)\right] \rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{u} J_{u}\right) \\
& \\
& \quad-\sum_{K^{\prime} Q^{\prime}} \mathbb{R}_{\mathrm{A}}\left(\alpha_{\ell} J_{\ell} K Q K^{\prime} Q^{\prime}\right) \rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{\ell} J_{\ell}\right)
\end{aligned}
$$

- when stationary and lower level is unpolarized

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} 00\right) \text { - } \\
& \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\frac{\mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} 00\right)}{2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} Q+A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)} \times\left(\rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right)\right. \\
& \mathbb{T}_{\mathrm{A}}\left(\alpha J K Q, \alpha_{\ell} J_{\ell} \Psi_{\ell} Q_{\ell}\right)=\left(2 J_{\ell}+1\right) B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha J\right) \\
& \times \sum_{K_{\mathrm{r}} Q_{\mathrm{r}}} \sqrt{3(2 K+1)\left(2 K_{\ell}+1\right)\left(2 K_{\mathrm{r}}+1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\mathrm{r}}=K, Q_{\mathrm{r}}=-Q
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} 00\right) \\
&=\left(2 J_{\ell}+1\right) B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right) \times \sqrt{3(2 K+1)^{2}} \\
& \times\left\{\begin{array}{ccc}
J_{u} & J_{\ell} & 1 \\
J_{u} & J_{\ell} & 1 \\
K & 0 & K
\end{array}\right\}\left(\begin{array}{ccc}
K & 0 & K \\
-Q & 0 & Q
\end{array}\right) \underline{J_{-Q}^{K}\left(\nu_{\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}}\right)} \\
&= \sqrt{3\left(2 J_{\ell}+1\right)} B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right) \\
& \times(-1)^{1+J_{u}+J_{\ell}+Q}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\} \underline{J_{Q}\left(\nu_{\left.\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}\right)}^{K}\right.} \\
& J_{Q}^{K}(\nu)=\oint \frac{\mathrm{d} \Omega}{4 \pi} \mathcal{I}_{Q}^{K}(\nu, \vec{\Omega})=\oint \frac{\mathrm{d} \Omega}{4 \pi} \sum_{i=0}^{3} \mathcal{T}_{Q}^{K}(i, \Omega) S_{i}(\nu, \vec{\Omega}) \\
& \text { geometrical factors }
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)= \sqrt{\frac{2 J_{\ell}+1}{2 J_{u}+1}} \frac{B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right)}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)+2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} Q} \\
& \times\left(w_{J_{u} J_{\ell}}^{(K)}(-1)^{Q} J_{-Q}^{K}\left(\nu_{0}\right) \rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right)\right. \\
& w_{J_{u} J_{\ell}}^{(K)}=(-1)^{1+J_{\ell}+J_{u}} \sqrt{3\left(2 J_{u}+1\right)}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\}
\end{aligned}
$$

$$
\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\frac{1}{1+\mathrm{i} Q H_{u}}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{B=0}
$$

essence of Hanle effect

$$
H_{u}=\frac{2 \pi \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}}}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)}
$$

$$
\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\frac{1}{1+\mathrm{i} Q H_{u}}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{B=0}
$$

- if $Q H_{u}$ is expressed to be $\tan (\alpha), \rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)$ is rewritten as

$$
\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)=\mathrm{e}^{-\mathrm{i} \alpha} \cos \alpha\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{B=0}
$$

- effect of magnetic field is to reduce by factor of

$$
\cos \alpha=\sqrt{\frac{1}{1+Q^{2} H_{u}^{2}}}
$$

and to dephase by

$$
\tan ^{-1} Q H_{u}
$$

e.g.
$\rho_{x}(t)=\frac{1}{4}\left(\begin{array}{ccc}1 & 0 & e^{2 i \omega t} \\ 0 & 2 & 0 \\ e^{-2 i \omega t} & 0 & 1\end{array}\right)$

application: stellar atmospheres

- two-level model $\left(J_{\ell}, J_{u}\right)$
- negligible stimulated emission due to weak radiation field
- isotropic lower level, i.e., $\rho_{Q}^{K}\left(\alpha_{\ell} J_{\ell}\right)=\rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right) \delta_{K 0} \delta_{Q 0}$
- complete redistribution

$$
J_{Q}^{K}\left(\nu_{0}\right) \rightarrow \bar{J}_{Q}^{K}\left(\nu_{0}\right)=\int_{-\infty}^{\infty} \mathrm{d} \nu p\left(\nu_{0}-\nu\right) J_{Q}^{K}(\nu)
$$

- plane-parallel atmosphere

$$
f(\vec{x}) \rightarrow f(z) \quad \mathrm{d} t_{\mathrm{L}}=-\frac{k_{\mathrm{L}}^{\mathrm{A}}}{\Delta \nu_{\mathrm{D}}} \mathrm{~d} z
$$

t_{L} : line optical depth

fixed quantization axis

SEE with fixed Z-axis

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}}=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} \sum_{Q^{\prime}} \mathcal{C}_{Q Q^{\prime}}^{K}\left[\rho_{Q^{\prime}}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}} \\
& \text { rotation } \\
& +\sum_{K^{\prime} Q^{\prime}} \frac{\mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} K^{\prime} Q^{\prime}\right)}{\text { absorption }}\left[\rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{\ell} J_{\ell}\right)\right]_{\vec{x}}+ \\
& -\sum_{K^{\prime} Q^{\prime}}[\frac{\mathbb{R}_{\mathrm{E}}\left(\alpha_{u} J_{u} K Q K^{\prime} Q^{\prime}\right)}{\text { emission }}+\mathbb{R}_{\mathrm{S}}(\overbrace{u}^{\prime} J^{\prime} K Q K^{\prime} Q^{\prime} Q^{\prime})]\left[\rho_{Q^{\prime}}^{K^{\prime}}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}} \\
& +\sqrt{\frac{2 J_{\ell}+1}{2 J_{u}+1}} \frac{C_{\mathrm{I}}^{(K)}\left(\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}\right)\left[\rho_{Q}^{K}\left(\alpha_{\ell} J_{\ell}\right)\right]_{\vec{x}}}{\text { excitation }} \\
& -[\underbrace{C_{\mathrm{S}}^{(0)}\left(\alpha_{\ell} J_{\ell}, \alpha_{u} J_{u}\right)}_{\text {de-excitation }}+\frac{\left.D^{(K)}\left(\alpha_{u} J_{u}\right)\right]}{\text { de-polarization }}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}},\}
\end{aligned}
$$

emission and absorption

$$
\mathbb{R}_{\mathrm{E}}\left(\alpha J K Q K^{\prime} Q^{\prime}\right)=\delta_{K K^{\prime}} \delta_{Q Q^{\prime}} \sum_{\alpha_{\ell} J_{\ell}} A\left(\alpha J \rightarrow \alpha_{\ell} J_{\ell}\right) \quad \begin{array}{ll}
& \text { Einstein's } \\
& \text { A coefficient }
\end{array}
$$

$$
\begin{aligned}
& \mathbb{T}_{\mathrm{A}}\left(\alpha_{u} J_{u} K Q, \alpha_{\ell} J_{\ell} 00\right)= \sqrt{3\left(2 J_{\ell}+1\right)} B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right) \\
& \times(-1)^{1+J_{\ell}+J_{u}+Q}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\} J_{\text {radiation field }}^{K}\left(\nu_{0}\right) \\
& \text { tensor }
\end{aligned}
$$

expression of SEE

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}}=-2 \pi \mathrm{i} \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}} \sum_{Q^{\prime}} \mathcal{K}_{Q Q^{\prime}}^{K}\left[\rho_{Q^{\prime}}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}} \\
& -\left[A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)+C_{\mathrm{S}}^{(0)}\left(\alpha_{\ell} J_{\ell}, \alpha_{u} J_{u}\right)+D^{(K)}\left(\alpha_{u} J_{u}\right)\right]\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}} \\
& +\sqrt{\frac{2 J_{\ell}+1}{2 J_{u}+1}}\left[B\left(\alpha_{\ell} J_{\ell} \rightarrow \alpha_{u} J_{u}\right) w_{J_{u} J_{\ell}}^{(K)}(-1)^{Q} \bar{J}_{-Q}^{K}\left(\nu_{0}\right)\right. \\
& \left.\quad+\delta_{K 0} \delta_{Q 0} C_{\mathrm{I}}^{(0)}\left(\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}\right)\right]\left[\rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right)\right]_{\vec{x}}
\end{aligned}
$$

$$
\text { with } \quad w_{J_{u} J_{\ell}}^{(K)}=(-1)^{1+J_{\ell}+J_{u}} \sqrt{3\left(2 J_{u}+1\right)}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\}
$$

$$
C_{\mathrm{I}}^{(0)}\left(\alpha_{u} J_{u}, \alpha_{\ell} J_{\ell}\right)=\frac{2 J_{u}+1}{2 J_{\ell}+1} \mathrm{e}^{-\frac{h \nu_{0}}{k_{\mathrm{B}} T_{\mathrm{c}}}} C_{\mathrm{S}}^{(0)}\left(\alpha_{\ell} J_{\ell}, \alpha_{u} J_{u}\right)
$$

$$
\begin{aligned}
& {\left[1+\underline{\epsilon}+\underline{\delta_{u}^{(K)}}\right]\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}}+\underline{\mathrm{i} H_{u}} \sum_{Q^{\prime}} \mathcal{K}_{Q Q^{\prime}}^{K}\left[\rho_{Q^{\prime}}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}}=} \\
& =\frac{c^{2}}{2 h \nu_{0}^{3}} \sqrt{\frac{2 J_{u}+1}{2 J_{\ell}+1}}\left[w_{J_{u} J_{\ell}}^{(K)}(-1)^{Q} \bar{J}_{-Q}^{K}\left(\nu_{0}\right)+\delta_{K 0} \delta_{Q 0} \underline{\epsilon} \underline{B_{\mathrm{P}}(T)}\right]\left[\rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right)\right]_{\vec{x}},
\end{aligned}
$$

where

$$
\underline{\epsilon}=\frac{C_{\mathrm{S}}^{(0)}\left(\alpha_{\ell} J_{\ell}, \alpha_{u} J_{u}\right)}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)}, \quad \underline{\delta_{u}^{(K)}}=\frac{D^{(K)}\left(\alpha_{u} J_{u}\right)}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)}, \quad \underline{H_{u}}=\frac{2 \pi \nu_{\mathrm{L}} g_{\alpha_{u} J_{u}}}{A\left(\alpha_{u} J_{u} \rightarrow \alpha_{\ell} J_{\ell}\right)}, \quad \underline{B_{\mathrm{P}}(T)}=\frac{2 h \nu_{0}^{3}}{c^{2}} \mathrm{e}^{-\frac{h \nu_{0}}{k_{\mathrm{B}} T}}
$$

$$
\begin{aligned}
& {\left[1+\epsilon+\delta_{u}^{(K)}\right] \underline{S_{Q}^{K}(\vec{x})}+\mathrm{i} H_{u} \sum_{Q^{\prime}} \mathcal{K}_{Q Q^{\prime}}^{K} S_{Q^{\prime}}^{K}(\vec{x})=} \\
& =w_{J_{u} J_{\ell}}^{(K)}(-1)^{Q} \bar{J}_{-Q}^{K}\left(\nu_{0}\right)+\delta_{K 0} \delta_{Q 0} \epsilon B_{\mathrm{P}}(T)
\end{aligned}
$$

with $\quad S_{Q}^{K}(\vec{x})=\frac{2 h \nu_{0}^{3}}{c^{2}} \sqrt{\frac{2 J_{\ell}+1}{2 J_{u}+1}} \frac{\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}}}{\left[\rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right)\right]_{\vec{x}}}$,

radiative transfer equation

$$
\frac{\mathrm{d}}{\mathrm{~d} s} I_{i}(\nu, \vec{\Omega})=-\sum_{j=0}^{3} K_{i j}^{\mathrm{A}} I_{j}(\nu, \vec{\Omega})+\varepsilon_{i} \quad(i=0, \ldots, 3)
$$

propagation matrix

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=-\left(\begin{array}{cccc}
\eta_{I}^{\mathrm{A}} & \eta_{Q}^{\mathrm{A}} & \eta_{U}^{\mathrm{A}} & \eta_{V}^{\mathrm{A}} \\
\eta_{Q}^{\mathrm{A}} & \eta_{I}^{\mathrm{A}} & \rho_{V}^{\mathrm{A}} & -\rho_{U}^{\mathrm{A}} \\
\eta_{U}^{\mathrm{A}} & -\rho_{V}^{\mathrm{A}} & \eta_{I}^{\mathrm{A}} & \rho_{Q}^{\mathrm{A}} \\
\eta_{V}^{\mathrm{A}} & \rho_{U}^{\mathrm{A}} & -\rho_{Q}^{\mathrm{A}} & \eta_{I}^{\mathrm{A}}
\end{array}\right)\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{I} \\
\varepsilon_{Q} \\
\varepsilon_{U} \\
\varepsilon_{V}
\end{array}\right)
$$

lower level
is isotropic

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\eta_{I}^{\mathrm{A}} & 0 & 0 & 0 \\
0 & \eta_{I}^{\mathrm{A}} & 0 & 0 \\
0 & 0 & \eta_{I}^{\mathrm{A}} & 0 \\
0 & 0 & 0 & \eta_{I}^{\mathrm{A}}
\end{array}\right) \\
& \eta_{I}^{\mathrm{A}}=k_{\mathrm{L}}^{\mathrm{A}} p\left(\nu_{0}-\nu\right) \\
& \varepsilon_{i}=k_{\mathrm{L}}^{\mathrm{A}} p\left(\nu_{0}-\nu\right) \sum_{K Q} w_{J_{u} J_{\ell}}^{(K)} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) S_{Q}^{K}(\vec{x}) \\
& \binom{w_{J_{u} J_{\ell}}^{(K)}=(-1)^{1+J_{\ell}+J_{u}} \sqrt{3\left(2 J_{u}+1\right)}\left\{\begin{array}{ccc}
1 & 1 & K \\
J_{u} & J_{u} & J_{\ell}
\end{array}\right\}}{S_{Q}^{K}(\vec{x})=\frac{2 h \nu_{0}^{3}}{c^{2}} \sqrt{\frac{2 J_{\ell}+1}{2 J_{u}+1}} \frac{\left[\rho_{Q}^{K}\left(\alpha_{u} J_{u}\right)\right]_{\vec{x}}}{\left[\rho_{0}^{0}\left(\alpha_{\ell} J_{\ell}\right)\right]_{\vec{x}}}}
\end{aligned}
$$

- RTE becomes uncoupled four equations

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} s} I_{i}(s)=\eta_{I}^{\mathrm{A}}(\vec{x}) I_{i}(s)+\varepsilon_{i}(\vec{x}) \quad(i=0, \ldots, 3) \\
& \eta_{I}^{\mathrm{A}}(\vec{x})=k_{\mathrm{L}}^{\mathrm{A}}(\vec{x}) p\left(\nu_{0}-\nu\right) \\
& \varepsilon_{i}(\vec{x})=k_{\mathrm{L}}^{\mathrm{A}}(\vec{x}) p\left(\nu_{0}-\nu\right) \sum_{K Q} w_{J_{u} J_{\ell}}^{(K)} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) S_{Q}^{K}(\vec{x})
\end{aligned}
$$

- they are readily solved as

$$
\begin{aligned}
& I_{i}(\nu, \vec{\Omega})=\int_{\vec{x}_{0}}^{\vec{x}} p\left(\nu_{0}-\nu\right) k_{\mathrm{L}}^{\mathrm{A}}\left(\vec{x}^{\prime}\right) \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}^{\prime}\right)} \sum_{K Q} w_{J_{u} J_{\ell}}^{(K)} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) S_{Q}^{K}\left(\vec{x}^{\prime}\right) \mathrm{d} s^{\prime} \\
& \text { external } \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}_{0}\right)} I_{i}^{\mathrm{b})}(\nu, \vec{\Omega}), \\
& \text { Where } \tau_{\nu}\left(\vec{x}, \vec{x}^{\prime}\right)=\int_{\vec{x}^{\prime}}^{\vec{x}} p\left(\nu_{0}-\nu\right) k_{\mathrm{L}}^{\mathrm{A}}\left(\vec{x}^{\prime \prime}\right) \mathrm{d} s^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{J}_{Q}^{K}\left(\nu_{0}\right)=\left[\bar{J}_{Q}^{K}\left(\nu_{0}\right)\right]_{\mathrm{I}}+\left[\bar{J}_{Q}^{K}\left(\nu_{0}\right)\right]_{\mathrm{E}} \\
& {\left[\bar{J}_{Q}^{K}\left(\nu_{0}\right)\right]_{\mathrm{I}}=\int_{-\infty}^{\infty} \mathrm{d} \nu p\left(\nu_{0}-\nu\right) \oint \frac{\mathrm{d} \Omega}{4 \pi} \sum_{i=0}^{3} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \int_{\tilde{x}_{0}}^{\vec{x}} \mathrm{~d} s^{\prime} p\left(\nu_{0}-\nu\right)} \\
& \times k_{\mathrm{L}}^{\mathrm{L}}\left(\vec{x}^{\prime}\right) \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}^{\prime}\right)} \sum_{K^{\prime} Q^{\prime}} w_{\left.J_{y} y_{e}^{\left(K^{\prime}\right)} \mathcal{T}_{Q^{\prime}}^{K^{\prime}}(i, \vec{\Omega}) S_{Q^{\prime}}^{K^{\prime}} \vec{x}^{\prime}\right)} \\
& =\int_{-\infty}^{\infty} \mathrm{d} \nu\left[p\left(\nu_{0}-\nu\right)\right]^{2}\left(\int \mathrm{~d}^{3} \vec{x}^{\prime} \frac{k_{\mathrm{L}}^{\mathrm{A}}\left(\vec{x}^{\prime}\right) \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}^{\prime}\right)}}{4 \pi\left(\vec{x}-\vec{x}^{\prime}\right)^{2}} \quad \mathrm{~d}^{3} \vec{x}^{\prime}=\left(\vec{x}-\vec{x}^{\prime}\right)^{2} \mathrm{~d} \Omega \mathrm{~d} s^{\prime}\right. \\
& \times \sum_{i=0}^{3} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \sum_{K^{\prime} Q^{\prime}} w_{J_{u}}^{\left(K_{\ell} J_{\ell}\right.} \mathcal{T}_{Q^{\prime}}^{K^{\prime}}(i, \vec{\Omega}) S_{Q^{\prime}}^{K^{\prime}}\left(\vec{x}^{\prime}\right) \\
& {\left[\bar{J}_{Q}^{K}\left(\nu_{0}\right)\right]_{\mathrm{E}}=\int_{-\infty}^{\infty} \mathrm{d} \nu p\left(\nu_{0}-\nu\right) \oint \frac{\mathrm{d} \Omega}{4 \pi} \sum_{i=0}^{3} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}_{0}\right)} I_{i}^{(\mathrm{b})}(\nu, \vec{\Omega})}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[1+\epsilon+\delta_{u}^{(K)}\right] S_{Q}^{K}(\vec{x})+\mathrm{i} H_{u} \sum_{Q^{\prime}} \mathcal{K}_{Q Q^{\prime}}^{K} S_{Q^{\prime}}^{K}(\vec{x})=} \\
& =\delta_{K 0} \delta_{Q 0} \epsilon B_{\mathrm{P}}(T)+w_{J_{u} J_{\ell}}^{(K)}(-1)^{Q}\left[\bar{J}_{-Q}^{K}\left(\nu_{0}\right)\right]_{\mathrm{E}} \\
& \quad+\int \mathrm{d}^{3} \vec{x}^{\prime} \frac{k_{\mathrm{L}}^{\mathrm{A}}\left(\vec{x}^{\prime}\right)}{4 \pi\left(\vec{x}-\vec{x}^{\prime}\right)^{2}} \sum_{K^{\prime} Q^{\prime}} G_{K Q, K^{\prime} Q^{\prime}}\left(\vec{x}, \vec{x}^{\prime}\right) S_{Q^{\prime}}^{K^{\prime}}\left(\vec{x}^{\prime}\right)
\end{aligned}
$$

where

$$
\underline{G_{K Q, K^{\prime} Q^{\prime}}\left(\vec{x}, \vec{x}^{\prime}\right)}=\int_{-\infty}^{\infty} \mathrm{d} \nu\left[p\left(\nu_{0}-\nu\right)\right]^{2} \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}^{\prime}\right)}
$$

$$
\times w_{J_{u} J_{\ell}}^{(K)} w_{J_{u} J_{\ell}}^{\left(K^{\prime}\right)} \sum_{i=0}^{3}(-1)^{Q} \mathcal{T}_{-Q}^{K}(i, \vec{\Omega}) \mathcal{T}_{Q^{\prime}}^{K^{\prime}}(i, \vec{\Omega})
$$

- equation for plane-parallel, semi-infinite stellar atmosphere is obtained as

$$
\begin{aligned}
& {\left[1+\epsilon+\delta_{u}^{(K)}\right] S_{Q}^{K}\left(t_{\mathrm{L}}\right)+\mathrm{i} H_{u} \sum_{Q^{\prime}} \mathcal{K}_{Q Q^{\prime}}^{K} S_{Q^{\prime}}^{K}\left(t_{\mathrm{L}}\right)=} \\
& =\delta_{K 0} \delta_{Q 0} \epsilon B_{\mathrm{P}}(T)+\sum_{K^{\prime}=0,2} \int_{0}^{\infty} \mathcal{G}_{K Q, K^{\prime} Q}\left(\left|t_{\mathrm{L}}^{\prime}-t_{\mathrm{L}}\right|\right) S_{Q}^{K^{\prime}}\left(t_{\mathrm{L}}^{\prime}\right) \mathrm{d} t_{\mathrm{L}}^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{G}_{K Q, K^{\prime} Q}\left(\left|t_{\mathrm{L}}^{\prime}-t_{\mathrm{L}}\right|\right)= & \int_{-\infty}^{\infty} \mathrm{d} x^{\prime} \int_{-\infty}^{\infty} \mathrm{d} y^{\prime} \frac{\Delta \nu_{\mathrm{D}}}{4 \pi\left(\vec{x}-\vec{x}^{\prime}\right)^{2}} G_{K Q, K^{\prime} Q}\left(\vec{x}, \vec{x}^{\prime}\right) \\
G_{K Q, K^{\prime} Q^{\prime}}\left(\vec{x}, \vec{x}^{\prime}\right)= & \int_{-\infty}^{\infty} \mathrm{d} \nu\left[p\left(\nu_{0}-\nu\right)\right]^{2} \mathrm{e}^{-\tau_{\nu}\left(\vec{x}, \vec{x}^{\prime}\right)} \\
& \quad \times w_{J_{u} J_{\ell}}^{(K)} w_{J_{u}}^{\left(K^{\prime} J_{\ell}\right.} \sum_{i=0}^{3}(-1)^{Q} \mathcal{T}_{-Q}^{K}(i, \vec{\Omega}) \mathcal{T}_{Q^{\prime}}^{K^{\prime}}(i, \vec{\Omega})
\end{aligned}
$$

- Stokes parameters $I_{i}(\nu, \vec{\Omega})$ are derived from S_{Q}^{K} as

$$
\begin{gathered}
I_{i}(\nu, \vec{\Omega})=\int_{0}^{\infty} \varphi(v) \mathrm{e}^{-\frac{t_{L} \varphi(v)}{\mu}} \sum_{K=0,2} \sum_{Q} w_{J_{u}}^{(K)} \mathcal{T}_{e} \mathcal{T}_{Q}^{K}(i, \vec{\Omega}) S_{Q}^{K}\left(t_{\mathrm{L}}\right) \frac{\mathrm{d} t_{\mathrm{L}}}{\mu} \\
\quad \text { or } \\
I_{i}(\nu, \vec{\Omega})=\sum_{K=0,2} \sum_{Q} w_{J_{J_{u}}(K)} J_{Q}^{K} \tau_{Q}^{K}(i, \vec{\Omega}) \int_{0}^{\infty} \mathrm{e}^{-\tau_{\nu}} S_{Q}^{K}\left(\frac{\mu \tau_{\nu}}{\varphi(v)}\right) \mathrm{d} \tau_{\nu}
\end{gathered}
$$

