The art of Stokes inversions

Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC), Spain National Astronomical Observatory, Japan

Outline

- What is an inversion technique?
- How do they work?
- ME inversions
- Accounting for asymmetric Stokes profiles
- Be careful with the choice of model atmosphere!
- Available codes
- Tips and tricks
- Stray-light considerations
- Running SIR
 - Input files
 - Visualization of results

What is an inversion technique?

- Any method used to infer the physical conditions of the atmosphere from the interpretation of Stokes profiles
 - Center-of-gravity method, bisector analyses, ...
 - Forward modeling
 - PCA, artificial neural networks
 - Least-squares fitting

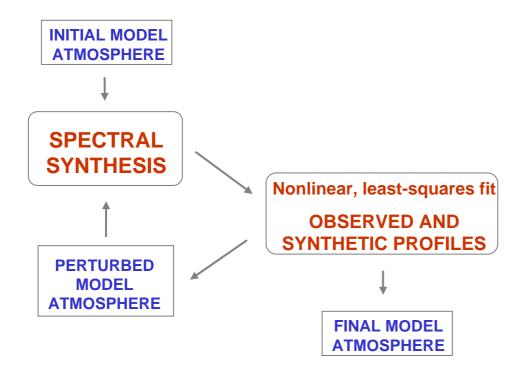
• What to expect: a model atmosphere capable of reproducing the observations.... nothing else!

Radiative transfer

• The Stokes parameters obey the RTE

$$\frac{d}{d\tau} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} \eta_{\mathrm{I}} & \eta_{\mathrm{Q}} & \eta_{\mathrm{U}} & \eta_{\mathrm{V}} \\ \eta_{\mathrm{Q}} & \eta_{\mathrm{I}} & \rho_{\mathrm{V}} & -\rho_{\mathrm{U}} \\ \eta_{\mathrm{U}} & -\rho_{\mathrm{V}} & \eta_{\mathrm{I}} & \rho_{\mathrm{Q}} \\ \eta_{\mathrm{V}} & \rho_{\mathrm{U}} & -\rho_{\mathrm{Q}} & \eta_{\mathrm{I}} \end{pmatrix} \begin{pmatrix} I-S \\ Q \\ U \\ V \end{pmatrix}$$

(Unno 1956; Rachkovsky 1962)


- $\eta_{I,Q,U,V}$ and $\rho_{Q,U,V}$ depend on $\mathbf{a} \equiv (B, \gamma, \chi, v_{LOS}, T, P_e, v_{mic})$
- This means that
 - Four Stokes parameters needed to understand just one of them
 - Proper interpretations of the Stokes vector require a good knowledge of the atmosphere (a)

Least-square inversions

- The complete line transfer problem has to be solved
- Self-consistent inferences \rightarrow Inversion techniques

Advantages:

- No simplifying assumptions
- Full Stokes vector fitted
- Complex model atmospheres
- All atmospheric parameters inferred at the same time

How do they work?

• Inversion driven by χ^2 -minimization:

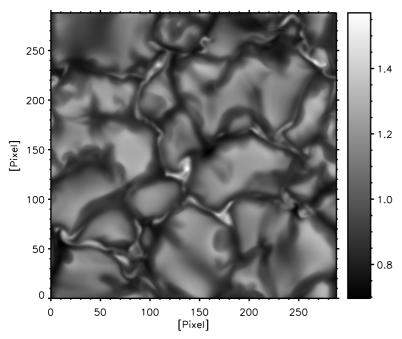
$$\chi^{2}(\mathbf{a}) = \sum \left[I_{obs}(\lambda_{i}) - I_{syn}(\lambda_{i}, \mathbf{a}) \right]^{2}$$

• Linearization: Levenberg-Marquardt algorithm

 $\nabla \chi^2(\mathbf{a}) + \mathbf{A}(\chi^2) \cdot \delta \mathbf{a} = 0$

- Keeping the number of free parameters small:
 - Atmospheric parameters perturbed in coarse grid
 - Full stratifications in finer grid by cubic spline interpolation
- Regularization techniques (*when in doubt, smooth*)
 - Penalty function, or
 - Modified SVD method (Ruiz Cobo & del Toro Iniesta 1992)

Inversions based on ME atmospheres

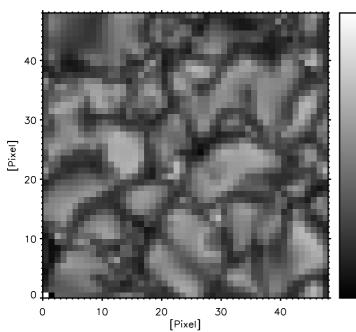

- ME atmosphere:
 - Source function is linear with optical depth
 - Absorption matrix does not vary with optical depth
- Analytical Stokes profiles
- Fast inversion
- Smooth maps of physical quantities
- Results are relatively accurate and easy to interpret

ME inversions of high spatial resolution profiles

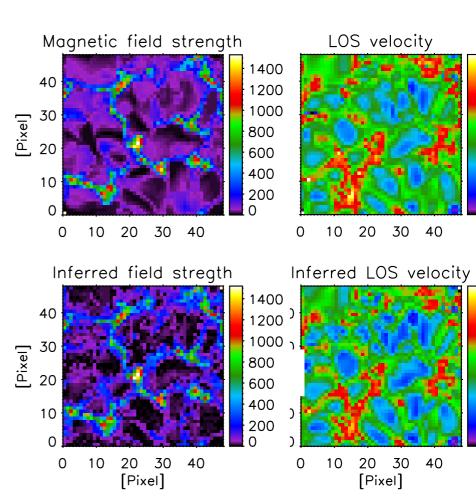
MHD simulations (Vögler et al. 2005)

 Fe I 630.1 and 630.2 nm profiles degraded to HINODE/SP pixel size

ME inversions of high spatial resolution profiles


- 1.4

- 1.2


- 1.0

- 0.8

MHD simulations (Vögler et al. 2005)

- Fe I 630.1 and 630.2 nm profiles degraded to HINODE/SP pixel size
- Maps of inferred B and v_{Los} very similar to real ones!

Orozco Suárez et al. 2007, ApJL

3

2

n

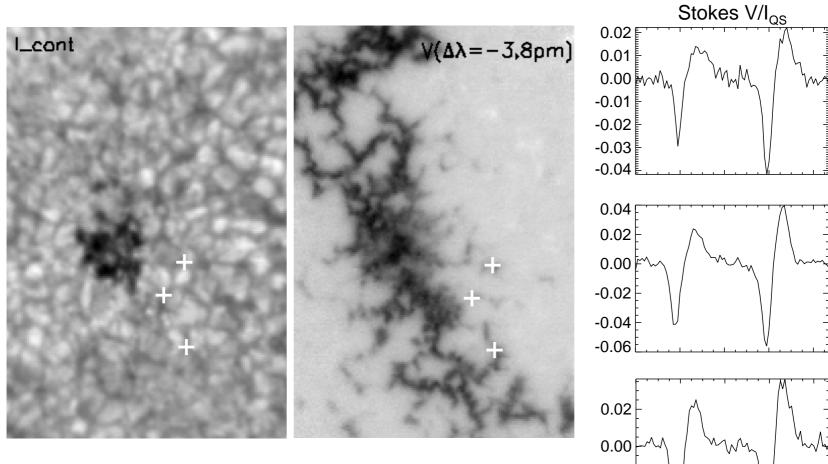
-2

3

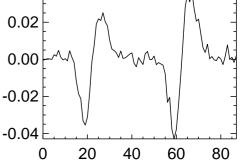
2

n

Inversions based on ME atmospheres

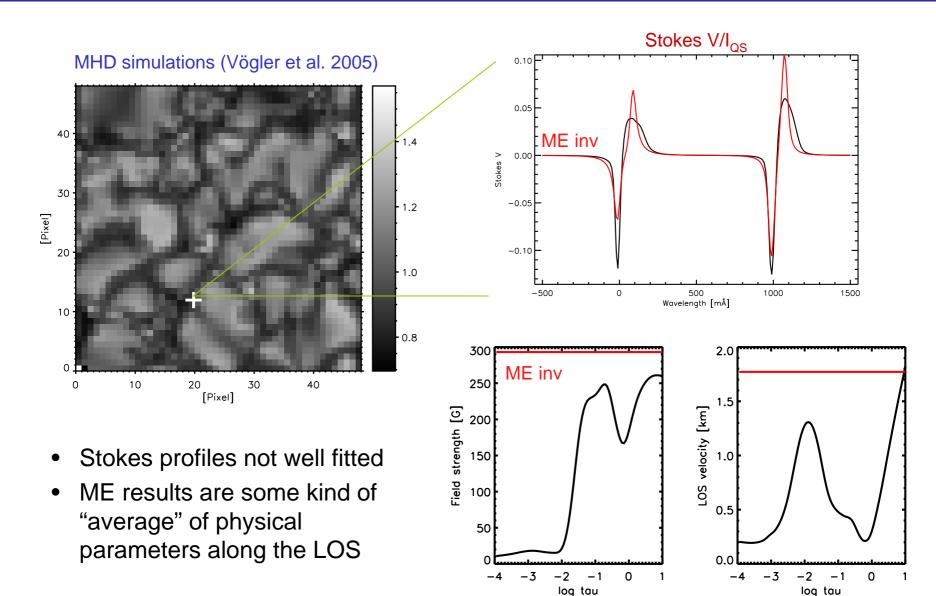

- ME atmosphere:
 - Source function is linear with optical depth
 - Absorption matrix does not vary with optical depth
- Analytical Stokes profiles
- Fast inversion
- Smooth maps of physical quantities
- Results are easy to interpret

- Simplistic treatment of radiation transfer
- Little thermal information. No height variations
- Cannot account for asymmetric Stokes profiles



Asymmetric Stokes profiles

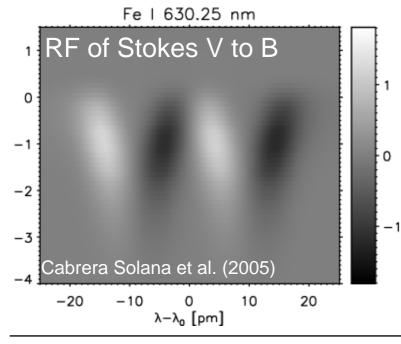
- KIS/IAA Visible Imaging Polarimeter + TESOS + KAOS
- VTT, Observatorio del Teide
- Spatial resolution: ~0.4"
- Pore near disk center, Fe I 630.15 and 630.25 nm



Bellot Rubio et al. (2007)

ME inversions of asymmetric profiles

The origin of asymmetries


Amplitude asymmetry/ Multi-lobed Stokes profiles

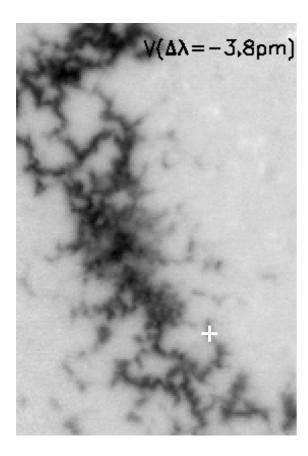
Area asymmetry

Different magnetic atmospheres coexisting in resolution element

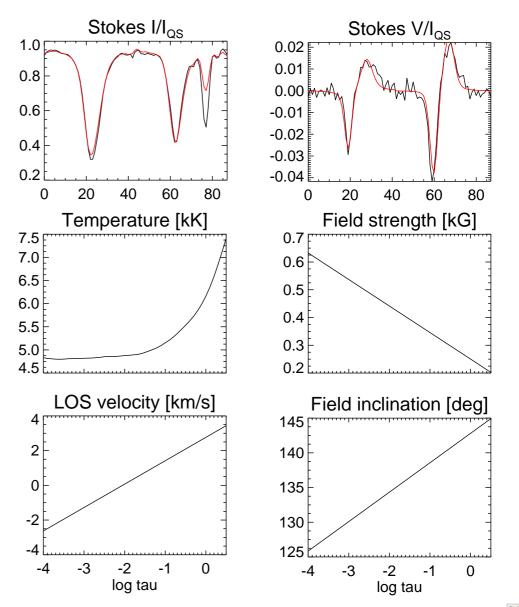
Gradients/discontinuities of physical parameters along LOS

Auer & Heasley (1978)

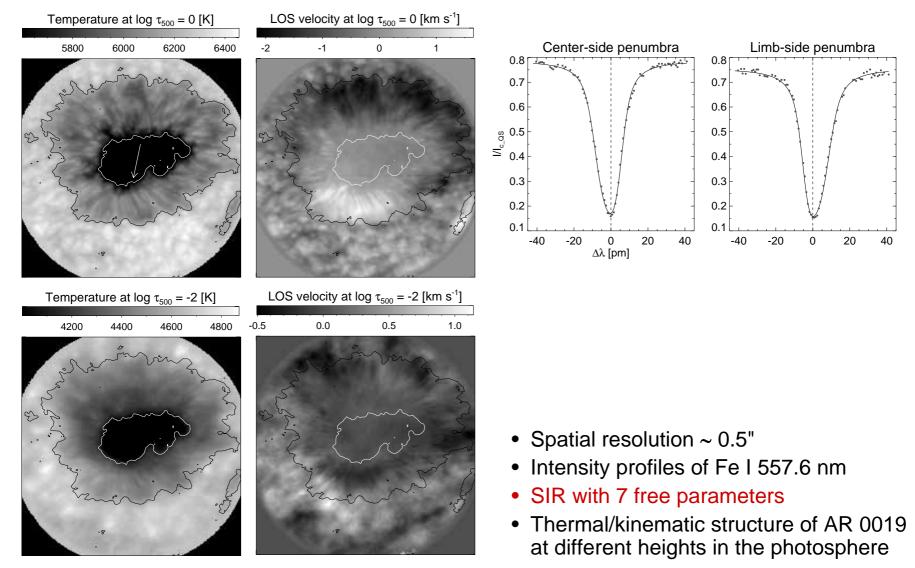
The area asymmetry gives information on the height variation of atmospheric parameters


Accounting for asymmetries

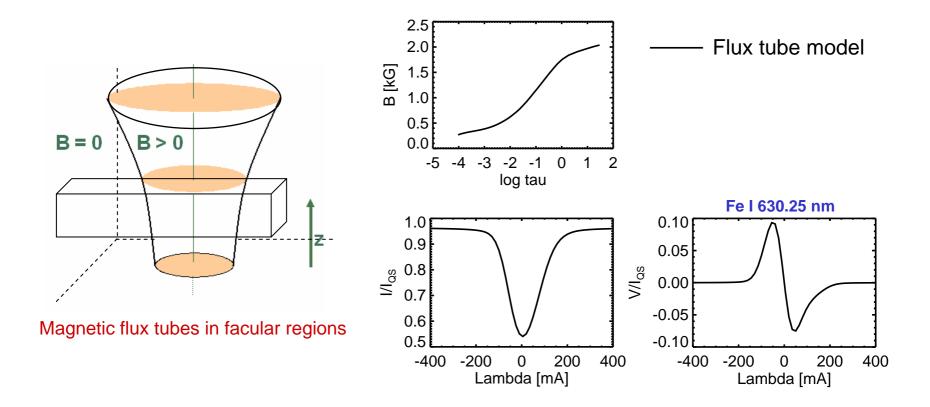
- Inversion codes capable of dealing with asymmetries
 - Are based on numerical solution of RTE
 - Provide reliable thermal information
 - Use less free parameters than ME codes
 - Infer stratifications of physical parameters with depth



Accounting for asymmetries


- VIP + TESOS + KAOS
- SIR with 10 free parameters
- Bellot Rubio et al. (2007)

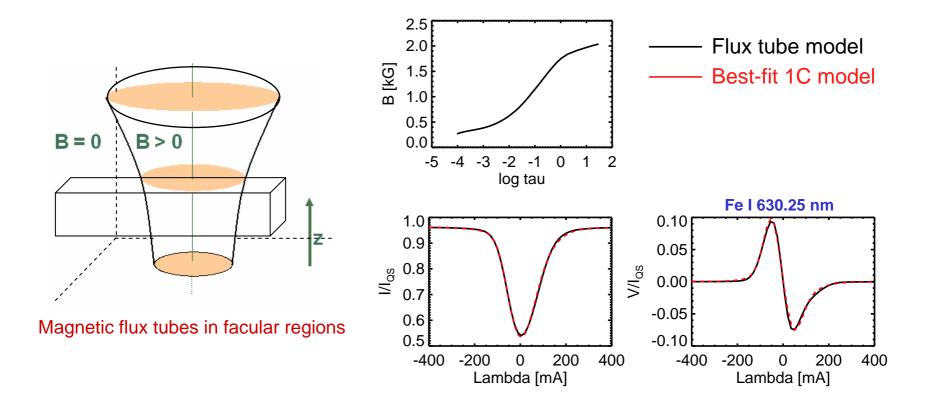
Inversions with gradients


Bellot Rubio, Schlichenmaier, & Tritschler 2006, A&A 453, 1117

NAOJ, 17 July 2007

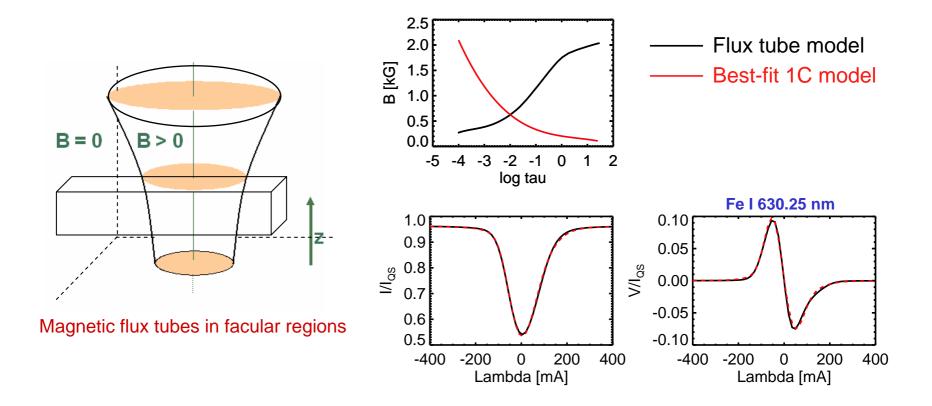
Be careful with the atmospheric model!

Inversion results change if the physical model is changed Models are often simplistic and do not describe the real atmosphere



Be careful with the atmospheric model!

Inversion results change if the physical model is changed Models are often simplistic and do not describe the real atmosphere

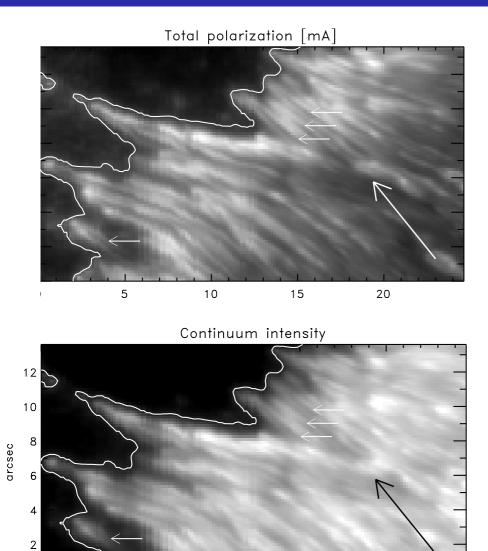


Be careful with the atmospheric model!

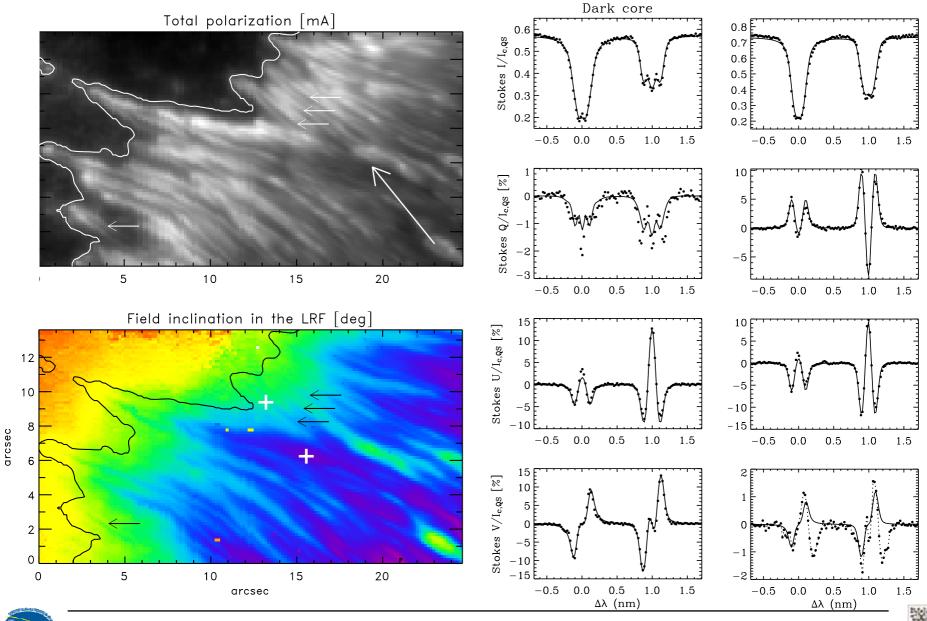
Inversion results change if the physical model is changed Models are often simplistic and do not describe the real atmosphere

Available codes for inversions with gradients

SIR	Ruiz Cobo & del Toro Iniesta (1992)	1C & 2C atmospheres, arbitrary stratifications, any photospheric line
SIR/FT	Bellot Rubio et al. (1996)	Flux tube model, arbitrary stratifications, any photospheric line
SIR/NLTE	Socas-Navarro et al. (1998)	NLTE line transfer, arbitrary stratifications
SIR/GAUS	Bellot Rubio (2003)	Uncombed penumbral model, arbitrary stratifications
SIR/JUMP	Bellot Rubio (2007)	Canopy-like atmospheres
SPINOR	Frutiger & Solanki (2001)	1C & 2C atmospheres, arbitrary stratifications, any photospheric line, molecular lines, flux tube model, uncombed model
LILIA	Socas-Navarro (2001)	1C atmospheres, arbitrary stratifications
MISMA IC	Sánchez Almeida (1997)	MISMA model, arbitrary stratifications, any photospheric line


Tips and tricks

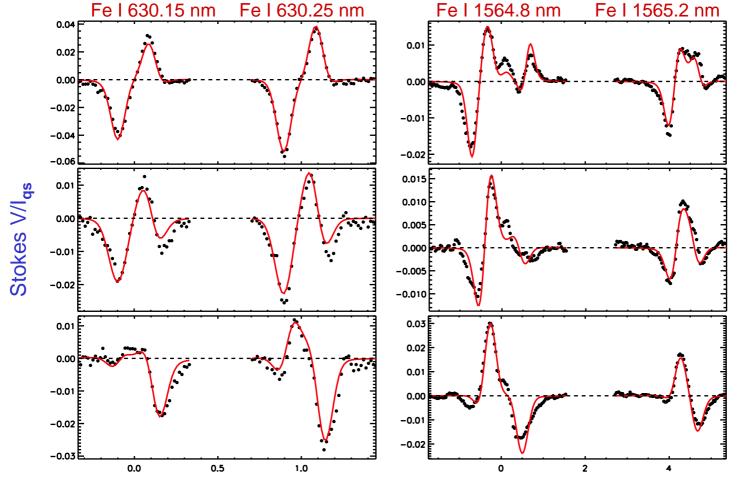
- First of all, look at the profiles
- Try a ME inversion, it usually works
 - If the V profiles are very asymmetric, fit only I, Q, and U
- Examine the fits: are they reasonably good?


1C SIR inversion of Hinode/SP data

1C SIR inversion of Hinode/SP data

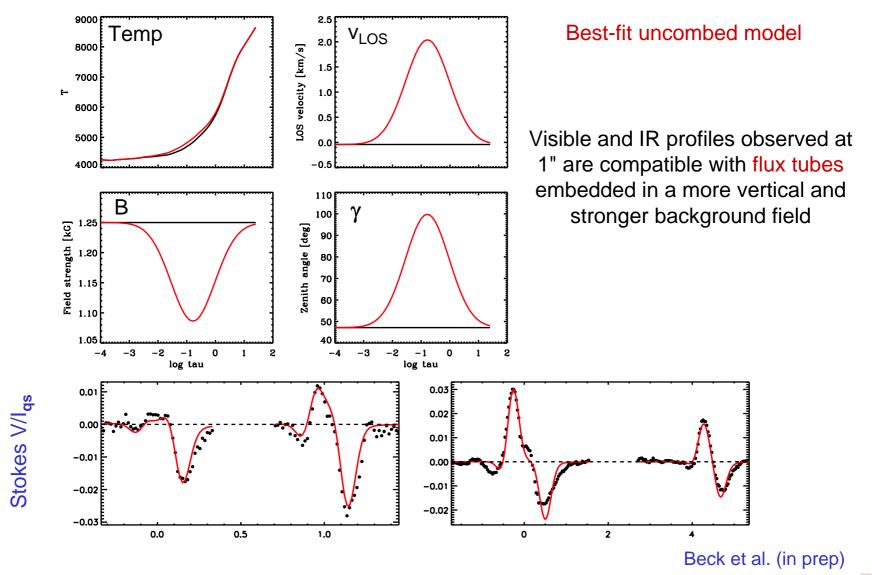
Tips and tricks

- First of all, look at the profiles
- Try a ME inversion, it usually works
 - If the V profiles are very asymmetric, fit only I, Q, and U
- Examine the fits: are they reasonably good?
- Identify
 - Pixels with bad fits and/or large asymmetries
 - Regions where interesting physical processes occur
- Run SIR inversions on these pixels
 - Which model are you going to use?


1C model, 2C model, flux tube model, uncombed model?

Uncombed inversion of penumbral profiles

SIR/GAUS inversion of simultaneous visible and IR observations



Beck et al. (in prep)

Uncombed inversion of penumbral profiles

Tips and tricks

- First of all, look at the profiles
- Try a ME inversion, it usually works
 - If the V profiles are very asymmetric, fit only I, Q, and U
- Examine the fits: are they reasonably good?
- Identify
 - Pixels with bad fits and/or large asymmetries
 - Regions where interesting physical processes occur
- Run SIR inversions on these pixels
 - Which model are you going to use?
 1C model, 2C model, flux tube model, uncombed model?
 - Use ME results as initialization
 - Give more weight to the strangest Stokes parameter
 - Keep it simple! See if linear stratifications (2 nodes) are sufficient
- Ask yourself if the retrieved model atmosphere makes sense!!
- You have experts in-house: ask them for advice (Jan-san)

• • ×

00×06°×000	🗞 🥝 🧭 ? 👘	
Number of cucles (*)	:1	! (0=synthesis)
Atomic parameters file Abundances file Initial guess model 1 (*)	: :malla.grid :LINES :THEVENIN :guess.mod	<pre>! ! (none=no stray light contam) ! (none=no convolution with PSF) ! (none=automatic selection) ! (none=DEFAULT LINES file) ! (none=DEFAULT ABUNDANCES file) !</pre>
Initial guess model 2 Weight for Stokes I Weight for Stokes Q Weight for Stokes U Weight for Stokes V AUTOMATIC SELECT. OF NODES? Nodes for temperature 1	: :1 :4 :4 :4 :0 :2	! (DEFAULT=1; 0=not inverted) ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=0=no; 1=yes)
Nodes for electr. press. 1 Nodes for microturb. 1 Nodes for magnetic field 1 Nodes for LOS velocity 1 Nodes for gamma 1 Nodes for phi 1 Invert macroturbulence 1? Nodes for temperature 2 Nodes for temperature 2 Nodes for microturb. 2 Nodes for magnetic field 2 Nodes for LOS velocity 2 Nodes for gamma 2 Nodes for gamma 2 Nodes for phi 2	22 23 24 24 25 25 25 25 25 25 25 25 25 25	! (0 or blank=no, 1=yes)
Invert macroturbulence 2? Invert filling factor? Invert stray light factor?	: :0.64 :200 : : : : : : :	<pre>! (0 or blank=no, 1=yes) ! (0 or blank=no, 1=yes) ! (0 or blank=no, 1=yes) ! (DEFAULT: mu=1. mu<0 => West) ! (DEFAULT: 1000) ! (DEFAULT: not used) ! (DEFAULT value: 1e-4) ! (DEFAULT value: 1.e-3) ! (0 or blank=splines, 1=linear) ! (0 or blank=Pe boundary cond.) ! (0 or blank=Pe boundary cond.) ! (0 or blank=Pe boundary cond.) ! (0 or blank=no, 1=yes) ! blanck= LTE (Ej. depart_6494.dat'</pre>

(Text Fill)--L1--C0--Top

PROFILE FILE

macs@orion.i il Oplins Relies					
		0000			
1 × 0 3 1					
1.00000	-583.463	0.744716		-0.00144671	
1.00000	-561.933	0./45056		-0.00153181	
1.00000	-540.403	0./44/16		-0.0015/436	
1.00000	-518.873	0.748843		-0.000765906	
1.00000	497.343		0.00012/851		0.0025104/
1.00000	-175.813			0.000638255	
1.00000	-454.283	0.733653	0.00102121	0.00170201	-0.00272322
1.00000	-432.753	0.740121	0.00212752	-0.00195732	-0.00276577
1.00000	-411.223	0.735525	0.000170201	0.000936107	-0.00221262
1.00000	389.693	0./42163	0.000/62/906	0.00140416	0.00199987
1.00000	368.163	0.734802	0.000680805	0.00102121	0.00399973
1.00000	-346.633	0.739014	0.00204242	0.00221262	-0.00659530
1.00000	325.103	0.729611	0.000723356	0.00276577	0.00531879
1,00000	-303.573	0.737951	0.000638255	-8.51007e-05	-0.00714846
1,00000	-282.043	0./23824	-8.5100/e-05	-0.000340403	-0.0123821
1.00000	-260.513	0./2/994	-0.0012/651	-0.000510604	-0.00804201
1.00000	-238.983	0.706846	-0.000468054	0.000765906	-0.0117439
1.00000	217.453	0.700123	0.000510604	0.003148/3	0.0152/56
1.00000	-195.923	0.702161	-0.00108183	-0.00297852	-0.0265514
1.00000	-174.393	0.678252	0.000638255	-0.000765906	-0.0284236
1.00000	-152.863	0.664679	-0.00276577	-0.00497839	-0.0282534
1.00000	-131.333	0.637872	-0.00527624	-0.00259557	-0.0340403
1.00000	109,803	0.624213	0.0039999/3	0.00195/32	0.0433545
1.00000	88,2739	0.576983	0.00172309	0.000468054	0.0545495
1.00000	-66.7490	0.542261	-0.00421248	-0.00408483	-0.0738248
1.00000	45.2130	0.488776	0.00182966	0.00425503	0.100972
1.00000	-23,6830	0.404739	-0.00672295	-0.0135310	-0.146373
1,00000	-2.15300	0.3516/9	-0.00923342	-0.0158/13	-0.161393
1.00000	19.3//0	0.303214	-0.0100419	-0.0198/10	-0.135459
1.00000	40.9070	0.259472	-0.0120843	-0.00851007	-0.0844624
1.00000	62.43/0	0.23/303	0.0113184	0.0052/624	0.03/2/41
1.00000	83,9679	0.256664	-0.0192328	0.0169776	-0.0101695
1.00000	105.497	0.264961	-0.0185094	0.0184668	0.00974403
1.00000	127.027	0.240495	-0.0143395	0.00719101	0.0344232
1.00000	148.557	0.258706	-0.0125523	-0.00859517	0.0799521
1.00000	1/0.08/	0.30/894	0.0135/36	0.01/14/8	0.145863
1.00000	191,617	0.375719	0.00799946	0.0212326	0.175392
1.00000	213.147	0.432439			0.173350
1.00000	234.677	0.519199	0.0100419	0.00578685	0.132885
1.00000	256.207	0.576302	-0.00536134	-0.00191477	0.0843773
1.00000	2/1./3/		-0.000808456		0.0598258
1.00000	299.26/	0.656424		-0.000255302	0.0405930
perfil.per	(Text	t Fill)L1-			

Line

 $\begin{array}{ccc} \text{Line} & \Delta\lambda \\ \text{index} & [\text{mA}] \end{array} \hspace{0.1 cm} \text{I/I}_{\text{qs}} \hspace{0.1 cm} \text{Q/I}_{\text{qs}} \hspace{0.1 cm} \text{U/I}_{\text{qs}} \hspace{0.1 cm} \text{V/I}_{\text{qs}} \end{array}$

lperfiles.pro

wperfiles.pro

-:**

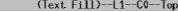
siritrol

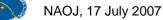
🗑 🗝 emacs@orion.iaa.es File Edit Ontions Buffers Tools Helr

00×00°+01	80008		
Number of cycles Observed profiles Stray light file PSF file Atomic parameters file Abundances file Initial guess model 1 Initial guess model 2 Weight for Stokes I Weight for Stokes U Weight for Stokes U Weight for Stokes V AUTOMATIC SELECI. OF NODES Nodes for temperature 1 Nodes for electr. press. 1	<pre>(*):1 (*):perfil.per : : :LINES :THEVENIN (*):guess.mod : :1 :4 :4 :4 :4 :2 :2 :2 :1</pre>	<pre>! (0=synthesis) ! (none=no stray light contam) ! (none=no convolution with PSF) ! (none=automatic selection) ! (none=DEFAULT LINES file) ! (none=DEFAULT ABUNDANCES file) ! ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=1; 0=not inverted) ! (DEFAULT=0=no; 1=yes)</pre>	<pre>WAVELENGTH GRID FIL C == emacs@dhcp-200-191.mtk.nao.ac.jp File Edit Options Buffers Tools Holp D = x = @ = x = @ @ @ @ @ @ @ @ IMFORTANT: a) All items must be separated by commons.</pre>
Nodes for magnetic field 1 Nodes for LOS velocity 1 Nodes for gamma 1 Nodes for phi 1 Invert macroturbulence 1? Nodes for temperature 2 Nodes for electr. press. 2 Nodes for microturb. 2 Nodes for magnetic field 2 Nodes for magnetic field 2 Nodes for gamma 2 Nodes for phi 2	:1 :1 :1 :1 :1 : : :	! (0 or blank=no, 1=yes)	: malla.grid (fext ill) L/ C1/ All
Invert macroturbulence 2? Invert filling factor? Invert stray light factor? mu=cos (theta) Estimated S/N for I Continuum contrast Tolerance for SVD Initial diagonal element Splines/Linear Interpolati Gas pressure at surface 1 Gas pressure at surface 2 Magnetic pressure term? NLTE Departures filename	:0.64 :200 : :	<pre>! (0 or blank=no, 1=yes) ! (0 or blank=no, 1=yes) ! (0 or blank=no, 1=yes) ! (DEFAULT: mu=1. mu<0 => West) ! (DEFAULT: 1000) ! (DEFAULT: not used) ! (DEFAULT value: 1e=4) ! (DEFAULT value: 1.e=3) ! (0 or blank=splines, 1=linear) ! (0 or blank=Pe boundary cond.) ! (0 or blank=Pe boundary cond.) ! (0 or blank=no, 1=yes) ! blanck= LTE (Ej. depart_6494.dat'</pre>	

• • ×

A


🗑 🗝 emacs@orion.iaa.es File Edit Options Buffers Tools Help


OP×BBYYDCQBB?

umber of cycles (*)):1	(Q=synthesis)
):perfil.per	Ĭ
Stray light file	: '	! (none=no stray light contam)
PSF file		(none=no convolution with PSF)
Wavelength grid file (s)):malla.grid !	(none=automatic selection)
noverengen grid file (3)		(none=DEFAULT LINES file)
Abundances file	: THEVEN IN	(none=DEFAULT ABUNDANCES file)
):guess.mod !	
Initial guess model 2	· .guess.mvu :	
Weight for Stokes I	:1 !	(DEFAULT=1: 0=not inverted)
	:4	-
Weight for Stokes Q		! (DEFAULT=1; 0=not inverted)
Weight for Stokes U		! (DEFAULT=1; 0=not inverted)
Weight for Stokes V		(DEFAULT=1; 0=not inverted)
AUTOMATIC SELECT. OF NODES?		! (DEFAULT=0=no; 1=yes)
Nodes for temperature 1	:2	
Nodes for electr. press. 1	÷.	
Nodes for microturb. 1	:1	
Nodes for magnetic field 1	:1	
Nodes for LOS velocity 1	:1	
Nodes for gamma 1	:1	
Nodes for phi 1	:1	
Invert macroturbulence 1?	:1 !	! (0 or blank=no, 1=yes)
Nodes for temperature 2	:	
Nodes for electr. press. 2	:	
Nodes for microturb. 2	:	
Nodes for magnetic field 2	:	
Nodes for LOS velocity 2	:	
Nodes for gamma 2	:	
Nodes for phi 2	:	
Invert macroturbulence 2?	: 1	! (0 or blank=no, 1=yes)
Invert filling factor?		! (0 or blank=no, 1=yes)
Invert stray light factor?		! (0 or blank=no, 1=yes)
mu=cos (theta)		(DEFAULT: mu=1, mu=0 => West)
Estimated S/N for I		(DEFAULT: 1000)
Continuum contrast		(DEFAULT: not used)
Tolerance for SVD		(DEFAULT value: 1e-4)
Initial diagonal element		(DEFAULT value: 1.e-3)
Splines/Linear Interpolation		! (0 or blank=splines, 1=linear)
Gas pressure at surface 1		! (0 or blank=Pe boundary cond.)
Gas pressure at surface 2		! (0 or blank=Pe boundary cond.)
Magnetic pressure term?		! (O or blank=no, 1=yes)
NLTE Departures filename	-	! blanck= LTE (Ej. depart_6494.da

ATOMIC PARAMETER FILE

** siritrol

🕈 🗝 emacs@orion.iaa.es				• • ×					
File Edit Options Buffers Tools Help									
0 0 × 0 6 ° + 0 6 6 9 6	8 ?								
Number of cycles(*):1Observed profiles(*):perfilStray light file:PSF file:Wavelength grid file(s):malla.pAtomic parameters file:LINESAbundances file:THEVEN	.per ! !(i grid !(i !(i	0=synthesis) none=no stray li none=no convolut none=automatic s none=DEFAULT LIN none=DEFAULT ABU	ion with PSF selection) HES file)					MOD	EL FILE
Initial guess model 2 :	🕅 🗝 emacs@	orion.iaa.es							
Weight for Stokes I :1	File Edit Options	s Buflers Tools Help							
Weight for Stokes Q :4 Weight for Stokes U :4	6 🕫 × 🤤	1374936	388						
Weight for Stokes V :4	1.191199		0.0000000[:00						Γ
AUTOMATIC SELECT. OF NODES? :0	1.4000	8886.7 3.07074E+03	2.256E+02 2.34	92E+03 4.6400E+05	1.4605E+02	1.2604E+02	-1.1482E+02	2.1731E+05	3.7768E-07
Nodes for temperature 1 :2		8728.1 2.52511E+03	2.256E+02 2.34	92E+03 4.6400E+05	1.4605E+02	1.2604E+02	-1.0502E+02	2.1085E+05	3.7393E-07
Nodes for electr. press. 1 :	1.2000	8569.4 2.06383E+03 8410.7 1.67605E+03		92E+03 4.6400E+05 92E+03 4.6400E+05			-9.5670E+01 -8.6739E+01		3.7053E-07 3.6747E-07
Nodes for microturb. 1 :1	1.0000	8252.1 1.35199E+03					-7.8201E+01		3.6474E-07
Nodes for magnetic field 1 :1	0.9000	8093.4 1.08291E+03		92E+03 1.6400E+05			-7.0025E+01		3.6231E-07
5	0.8000	7914.7 8.37268E+02 7696.1 6.04266E+02		i92E+03 4.6400E+05 i92E+03 4.6400E+05			-6.2107E+01 -5.4178E+01		3.6103E-07 3.6153E-07
:** sir.trol (Text Fill)-	0.6000	/44/.4 4.092/0E+02		92E+03 4.6400E+05			-4.5889E+01	1./294E+05	3.6293E-0/
		7178.8 2.61987E+02		92E+03 4.6400E+05		1.2604E+02		1.6719E+05	3.6429E 07
	0.4000 0.3000	6880.1 1.54640F+02 6592.3 9.00154E+01		892E+03 4.6400E+05 892E+03 4.6400E+05		1.2604E+02	2.6596F+01	1.6061E+05	3.6536F 07 3.6304E-07
	0.2000	6322.8 5.28586E+01					0.0000E+00		3.5603E-07
	0.1000	6084.1 3.25596E+01	2.256E+02 2.34	92E+03 4.6400E+05	1.4605E+02	1.2604E+02	1.7050E+01	1.3330E+05	3.4316E-07
	0.0000	5875.4 2.13316E+01 5696.8 1.49885E+01		92E+03 4.6400E+05 92E+03 4.6400E+05			3.6610E+01 5.8242E+01	1.2186E+05 1.0997E+05	3.2486E-07 3.0238F-07
	-0.2000	5543.1 1.11864E+01		92E+03 4.6400E+05		1.2604E+02		9.8263E+04	2.7768E-07
	-0.3000	5409.4 8.73575E+00	2.256E+02 2.34	92E+03 4.6400E+05	1.4605E+02	1.2604E+02	1.0504E+02	8.7213E+04	2.5255E-07
	-0.4000	5295.8 7.06379F+00		92F+03 4.6400F+05			1.2903F+02	7.7100F+04	2.2806F-07
	-0.5000	5192.1 5.80998E+00 5093.5 4.81886E+00		92E+03 4.6400E+05 92E+03 4.6400E+05		1.2604E+02 1.2604E+02	1.5291E+02		2.0521E-07 1.8436E-07
	-0.7000	4994.8 4.00224E+00		92E+03 4.6400E+05		1.2604E+02			1.6563E-07
leemod.pro	-0.8000	4906.1 3.34879E+00		92E+03 4.6400E+05		1.2604E+02			1.4855E-07
	-0.9000	4827.5 2.82042E+00 4758.8 2.39137E+00		92E+03 4.6400E+05 92E+03 4.6400E+05		1.2604E+02	2.4496E+02 2.6702E+02		1.3300E-07 1.1887E-07
	-1.1000	4690.1 2.02242E+00		92E+03 4.6400E+05		1.2604E+02			1.0625E-07
escribemod.pro	-1.2000	4631.5 1.72307E+00		92E+03 4.6400E+05		1.2604E+02			9.4772E-08
I	-1.3000	4582.8 1.48063E+00 4539.1 1.27741E+00		92E+03 4.6400E+05 92E+03 4.6400E+05			3.3157E+02 3.5269E+02		8.4341E-08 7.4964E-08
modolodor? v	-1.5000	4495.5 1.10053E+00		92E+03 4.6400E+05		1.2604E+02		1.9116E+04	6.6613E-08
modelador2.x	-1.6000	4456.8 9.52386E-01	2.256E+02 2.34	92E+03 4.6400E+05	1.4605E+02	1.2604E+02	3.9451E+02	1.6816E+04	5.9107E-08
	-1.7000	4428.2 8.33382E-01					4.1526E+02		
equilibrium.x	-1.8000	4409.5 7.37876E-01 4390.8 6.53162E-01		92E+03 1.6400E+05 92E+03 4.6400E+05		1.2604E+02 1.2604E+02	4.3592E+02 4.5649E+02	1.3002E+04	1.6192E-08 4.0787E-08
equilibrium.x	-2.0000	4372.2 5.78038E-01	2.256E+02 2.34	92E+03 4.6400E+05	1.4605E+02	1.2604E+02	4.7698E+02	1.0052E+04	3.6016E-08
		4353.5 5.11436E-01			1.4605E+02	1.2604E+02	4.9737E+02	8.8384E+03	3.1803E-08
geometrical.x	: guese Loading muh		Fill)L1C0T	op					
ycomethical.x	- construg and								
	1 I	тр		D			2.1		
	log τ	T P _e	V _{mic}	B V _{LOS}	γ	Φ	z [km]	P_	ρ

Running SIR/GAUSS: input files

muj.trol - emacs@hsc24.mtk.nao.ac.jp	GAUSSIAN FILE
ile Edit Options Buffers Tools Help	
ViewXGSYWWWQSYYObserved profiles Observed profiles Stray light file Atomic parameters file Abundances file Initial guess model 1 Initial guess model 2 File containing gaussian(*):2 :Profile.per :Imuj.gaus!(0=synthesis) (cosi) !(none=no stray light co !Merry Law Weight for Stokes I Weight for Stokes U Weight for Stokes V Weight for Stokes V II Weight for Stokes V II Weight for Stokes V Weight for Stokes V II Weight for Stokes V Weight for Stokes V II Weight for Stokes V II Weight for Stokes V II Weight for Stokes V II Weight for Stokes V II III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<pre>.e) (S file) (S file) (S file) (central position index : 0.2 (Sigma (optical depth) : 0.5 (Amplitude for T : 800.) (Amplitude for T : 800.) (Amplitude for B : -1.0E+05) (Amplitude for B : -500.) (Amplitude for v : -1.0E+05) (Amplitude for gamma : -30.0) (Amplitude for fi : -5.)</pre>
Nodes for LOŠ velocity 1 :1 Nodes for gamma 1 :0.1 Nodes for phi 1 :1 Invert macroturbulence 1? :0 ! (0 or blank=no, 1=yes) Nodes for temperature 2 :1 Nodes for telectr. press. 2 :0 Nodes for microturb. 2 :0 Nodes for magnetic field 2 :0,1 Nodes for LOS velocity 2 :0,1 Nodes for gamma 2 :1 Nodes for phi 2 :1	8000 (Fundamental)L1All
Invert macroturbulence 2?! (0 or blank=no, 1=yes)Invert filling factor?:0! (0 or blank=no, 1=yes)Invert stray light factor?:0! (0 or blank=no, 1=yes)Nodes for center of gaussian:0,1! Only 1 allowed if gauNodes for width of gaussian:1! only 0 or 1 allowed if gamu=cos (theta):0.84! (DEFAULT: mu=1. mu<0 =>Estimated S/N for I:800! (DEFAULT: 1000)Continuum contrast:! (DEFAULT: not used)Tolerance for SVD:! (DEFAULT value: 1e-4)Initial diagonal element! (DEFAULT value: 1.e1)Gas pressure at surface 1:5.e3! (0 or blank=Pe boundary)Magnetic pressure term?:0! (0 or blank=no, 1=yes)	v cond.
: muj.trol (Fundamental)L10A11	

4000

1.0

0.5

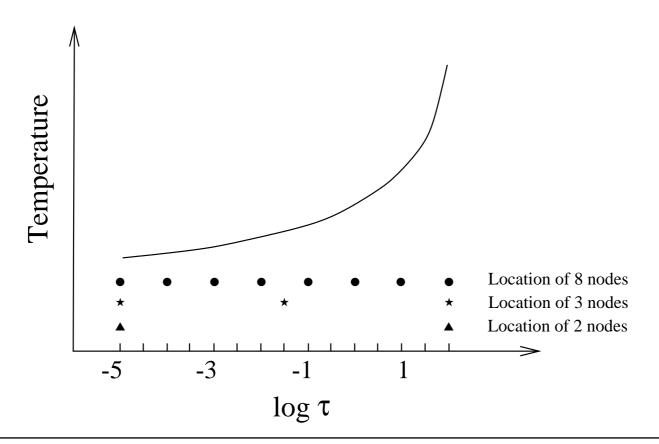
0.0

-1.5

-2.0

-0.5

 $log(\tau)$

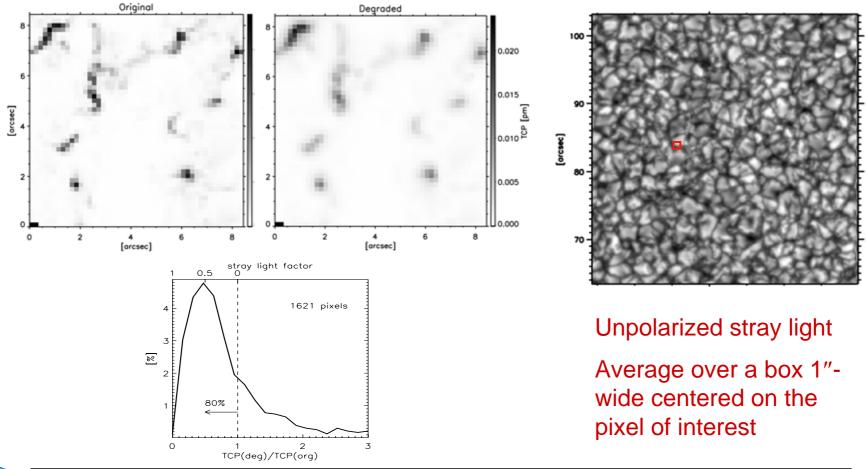

-1.0

1200

Concept of nodes

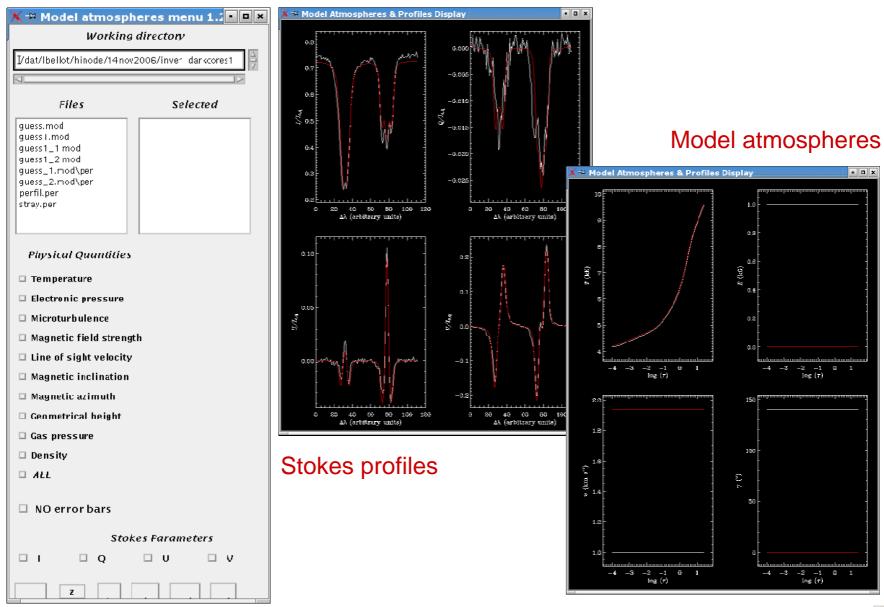
- Keeping the number of free parameters small:
 - Atmospheric parameters perturbed in coarse grid (nodes)
 - Full stratifications in finer grid by cubic spline interpolation

Stray-light considerations


- Stray-light in ME inversions:
 - Equivalent to a magnetic filling factor f = 1- α
- Stray-light in SIR inversions:
 - It is NOT equivalent to a magnetic filling factor
 - In fact, SIR has two free parameters: $\boldsymbol{\alpha}$ and f
- Global vs local stray-light profile
 - Classical treatment: global stray-light profile (over FOV)
 - Orozco Suárez et al. (2007): local stray-light profile accounts for telescope diffraction

Local stray light

- Telescope diffraction reduces the polarization signal
- Important for weak fields and noisy signals!



echo sir.trol | sir.x

Visualizing SIR results: graphics.pro

