Panel: Future of ILWS - Challenges & opportunities for the next ten years

JAXA plan for solar and heliospheric observations

ILWS Tenth Anniversary Symposium Vienna, February 14, 2013 United Nations International Centre

Saku Tsuneta National Astronomical Observatory of Japan

General tendency of solar physics missions in the coming 20 years

- Combination of high resolution and global imaging missions
- From mere imaging to spectroscopy and spectro-polarimetry
- More complete and simultaneous atmospheric coverage without temperature gap (with wider wavelength coverage)
- Toward out-of-ecliptic

Solar physics in larger science context

- From physical understanding to prediction
 - Space weather in terms of flares and CMEs
 - Space climate in terms of magnetic fields and cosmic rays, TSI, SSI (UV)
- More influence and integration to astrophysics and geo/planetary sciences
 - Common physics of magnetized plasma
 - Good example: magnetic reconnection
 - Sun and origin of life
 - Super-flares
 - Faint young sun paradox

Open issues in solar physics

- Internal structure of the Sun: differential rotation, meridional flow, turbulent diffusion, and tachocline
- Global and turbulent dynamo process
- 3D magnetic structure from photosphere through corona
- Chromospheric and coronal heating
- Prediction of solar flares
- Acceleration of fast solar wind
- Fundamental plasma processes in all layers of solar atmosphere
 - Propagation and dissipation of waves
 - Properties and roles of magnetic reconnection
- Solar activity and climate

Solar physics from space in Japan

Hinotori/ASTRO-A (1981–1982)

Solar flare observations in X & γ -rays

ISAS-NASA-UK Yohkoh/SOLAR-A

Photospheric magnetic fields

Solar physics from space AYA **Open issues in solar physics** Fundamental plasma processes (SOLARC) **Chromospheric and coronal heating (SOLAR-C)** Acceleration of fast solar wind (SOLAR-C) Local dynamo process (SOLAR-C/D) Internal structure and flow (SOLAR-D) Global dynamo process (SOLAR-D)

πιλαγιαγο

SOLAR-C

Systems approach to understand solar and heliospheric magnetic activities and to develop algorithm for activity prediction

Photospheric magnetic fields

Solar-C concept

- *Guiding principle* is that *small scale plasma processes* associated with magnetic emergence, waves, shocks, and magnetic reconnection dictate the evolution of the global phenomena of the Sun and the heliosphere (and vice versa).
- Observations so far made indicate that observations of *small scale* structures and processes are within our reach.
- Hinode clearly showed that the *combination of high spatial resolution and spectroscopy* (including spectro-polarimetry) is a powerful tool for obtaining magnetic and plasma information.

Solar-C concept (continued)

- To establish magnetic connectivity in terms of both space and time from photosphere all the way to corona *via 3 means*:
 - By *direct measurement* of the region plasma-beta <1 chromosphere
 - By computational *extrapolation* of coronal magnetic fields
 - By very high resolution EUV observations of corona
- This is inevitably achieved with **larger telescopes with highest possible throughput** for more photons and higher spatial resolution. High S/N is critical in order to retrieve information from spectral profiles.

Solar-C mission definition

Mission: to understand solar and heliospheric magnetic activities and to develop algorithm for solar activity prediction by understanding the magnetic coupling of convection zone-photosphere-chromospheretransition region and corona

Science cases:

- 1. 3D-magnetic structure with neutral sheets
- 2. Heating of chromosphere and corona
- 3. Acceleration of fast solar wind
- 4. Prediction of solar flares
- 5. Fundamental plasma processes such as reconnection, waves, shocks, particle acceleration and turbulence
- 6. Global and local dynamo
- 7. Sun's influence to Earth climate

Key requirements:

- 1. High spatial resolution to see more elemental structure inferred by Hinode
- 2. High time resolution to freeze rapidly changing chromospheric phenomena
- 3. Chromospheric magnetic observations
- 4. Seamless spectroscopic imaging observations from photosphere to corona
- 5. Wide FOV to connect local and global and to cover AR

Imaging spectroscopy instruments:

X-ray/EUV: ultra-high resolution EUV telescopes with optional photoncountng telescope

<u>*UV:*</u> high-throughput telescope x10 more sensitive with seamless coverage in temperature <u>Visible:</u> 1.5m-class telescope to obtain 3D magnetic structure from photosphere to corona with x10 more photons, and x3 resolution with high cadence

Hinode observations on solar north pole

minus←B→plus

Tsuneta+08, Ito+ 10, Shiota+ 12

Hinode magnetic flux in polar regions

- North pole: reversal going on
- South pole: stationary

Solar&helio physics roadmap 2011-2030: From SOLAR-C to SOLAR-D

Summary

- Japan has been contributing to better understanding on the fundamental plasma processes taking place on the sun with 3 JAXA solar missions. We continue to do so with the proposed Solar-C mission.
- We recognize the importance of heliophysics in terms of its societal and environmental effects on Earth. We desire to contribute to ILWS activity with existing and planned JAXA missions.