SOLAR-C mission

Saku Tsuneta (NAOJ/JAXA)
SOLAR-C working group
January 31, 2008
Solar physics from space in Japan

Hinotori (1981-1982)

Yohkoh (1991-2001)
With NASA/PPARC

Hinode (2006-) with NASA/STFC/ESA

SOLAR-C
2010-19
Solar physics from space in Japan

Tansei
(Pathfinder mission)
With NASA, UK

Hinotori (ASTRO-A)
188 kg, 1981

Non-thermal acceleration
・Hard-Xray imaging with rotation modulation collimator 10 arcsec
・Bragg crystal spectrometer
・SXS, HXS

Yohkoh (SOLAR-A)
390 kg, 1991

Non-thermal acceleration and plasma heating
・HXR Fourier telescope (J) 7 arcsec
・Soft X-ray telescope (J/US) 5arcsec
・Bragg spectrometer (J, US, UK)
・WBS

Hinode (SOLAR-B)
~ 900kg, 2006

Magnetic fields with corona
・SOT (Japan, US) 0.2 arcsec
・XRT (US, Japan) 2arcsec
・EIS (UK, US, Japan) 2arcsec

Solar physics from space in Japan

Tansei
(Pathfinder mission)
With NASA, UK

Hinotori (ASTRO-A)
188 kg, 1981

Non-thermal acceleration
・Hard-Xray imaging with rotation modulation collimator 10 arcsec
・Bragg crystal spectrometer
・SXS, HXS

Yohkoh (SOLAR-A)
390 kg, 1991

Non-thermal acceleration and plasma heating
・HXR Fourier telescope (J) 7 arcsec
・Soft X-ray telescope (J/US) 5arcsec
・Bragg spectrometer (J, US, UK)
・WBS

Hinode (SOLAR-B)
~ 900kg, 2006

Magnetic fields with corona
・SOT (Japan, US) 0.2 arcsec
・XRT (US, Japan) 2arcsec
・EIS (UK, US, Japan) 2arcsec
Solar Physics from Space in Japan

- Strong support from X-ray astronomers in Hinotori and Yohkoh missions
- Heritage of suborbital (sounding rocket and balloon) programs at NAOJ (U. Tokyo)
- Merge space and ground-based optical people to form one team for SOLAR-B
- With successful completion of SOLAR-B, solar physics reached critical mass to implement a major mission in stand-alone mode if with international collaboration.
Hinode (SOLAR-B) mission objective: systems approach to understand generation, transport and ultimate dissipation of solar magnetic fields with 3 well-coordinated advanced telescopes.

Solar Optical Telescope (SOT)
0.2 arcsec vector-magnetic and photometric images

EUV Imaging Spectrometer (EIS)
LOS velocity and turbulence maps at log $T = 4.7, 5.4, 6.0 - 7.3 \, \text{K}$, Sensitivity $\sim 1\%$ of Alfvén velocity

X-ray Telescope (XRT)
Sensitive to 1-10MK 1arcsec resolution with high cadence

Launched on Sep 23, 2006 by JAXA
Japan-US-UK-ESA project
Mission Lifetime: > 3 years
Orbit: Polar, Sun Synchronous
Solar-B chronology

- 1994-1995 Ad-hoc working group at NAOJ
- 1995 Mission proposal (MUSES-C)
- 1996 Mission proposal2 (IR-mission)
- 1997 Mission proposal3 (finally won)
 ==parallel activity in US and UK==
- 1998 New start with basic research ¥
- 1999-2001 Proto-model design/fab./test
- 2001-2004 Flight-model design/fab./test
- 2005-2006 Final test/launch
- 2006 PV Observations start
SOLAR-B science mission design (1995-1997)

- SOT: Modest 50cm diffraction-limited telescope, considering science requirement, technical and cost reality.
- Stokes polarimeter is a must instrument (can not fly only with filter instrument)
- Needs velocity maps with EUV imaging spectrometer
- Simultaneous observations with high co-alignment accuracy
- XRT: Choice of grazing incidence optics to have temperature sensitivity in 1-20 MK, while maintaining high spatial resolution
- *Once the concept was established, there has been no compromise during the development.*
Strong international collaboration for SOLAR-B
3 space agencies, 11 organizations in 4 countries
NAOJ/ATC Clean Room for space optics

190m², 10m High
Class 100
Class 0-10 in the booth
Space-chamber, large optical flat, fast interferometer, large Newport table

Heliostat to introduce natural star and sun light: Beam size 55 cm dia.
SOT assembly and test at NAOJ/ATC
Telescope assembly

Telescope integration and test at NAOJ/ATC clean room

Thermal vacuum test

Telescope in clean room illuminated with 50cm sun beam

Optical performance test in orbit environment
XRT Camera Calibration Facility at NAOJ/ATC

X-ray Monochrometer

Vacuum Chamber
XRT Camera Calibration Facility

X-ray monochromator

EUV monochromator

SSD

55Fe

Shutter
SOLAR-B Flight model at ISAS
SOLAR-C mission
Parallel investigation

- **Plan A**: Out-of-ecliptic magnetic and helioseismic observations of solar polar region to investigate the internal structure and dynamo mechanism of the Sun.

- **Plan B**: Higher resolution observations to investigate heating and dynamics of solar atmosphere with UV-enhanced Hinode SOT plus advanced spectroscopic capabilities

- Request mid-2010 launch.

- Launch vehicle JAXA H-IIA.
Plan A: Investigate the sun as a star through exploration of polar regions

- Out-of-ecliptic observations on solar polar regions have never been performed.
- Hinode is providing unprecedented view on the magnetic landscape of the solar polar regions.
- Observing target includes
 - Helio-seismic observations on internal acoustic speed, angular rotation speed, meridional flow, and flux tube imaging
 - Magnetic observations on surface magnetic and velocity fields
 - Option: reach deep convection zone and tachocline with dual satellite observations, using the methodology of local helio-seismology.
 - Option: in-site instruments
Magnetic and velocity fluctuations in the Solar Atmosphere

Granular motion
Elemental flux tube
Acoustic waves
Hot corona
Spicules
etc etc....

Rutten, R., ASP-CS, 184, 181, 1999
Chromosphere more dynamic than expected!
Post-Hinode understanding on solar atmosphere

Chromospheric jets due to reconnection
Waves along spicules
Penumbral micro-jets
Magnetic velocity fluctuation

Waves in prominence
Convective collapse
Supersonic downflow
Slow solar wind
High coronal turbulence
Ubiquitous horizontal fields
Polar kG fields

Rutten, R., ASP-CS, 184, 181, 1999
Plan B: High resolution observations from photosphere to corona through interface region of chromosphere and transition region

- **From imaging to spectroscopy:** obtain precise information on dynamics such as waves, thermal and MHD instabilities, reconnection and on magnetic fields
- **From visible to UV:** cover the entire solar atmosphere from photosphere to corona through chromosphere and transition region
- **Strawman instruments**
 - Visible-UV telescope (1300-8500 Å) > 50 cm diffraction-limited telescope (<0.1-0.3 arcsec) with advanced imaging and spectroscopic instruments
 - Ultra-high resolution EUV/X-ray telescope (100-1000 Å)
 - Enhance high-resolution spectroscopic capability as compared with Hinode.
- **Understanding on coronal and chromospheric heating and dynamics through observations by combination of spectroscopic and imaging instruments**
 - Magnetic and velocity fields of photosphere and chromosphere
 - Wave, turbulence, magnetic reconnection, mode coupling of waves at $\beta \sim 1$ layer
- **Progress on Hinode data analysis would affect the mission concept.**
 - For instance, remarkable dynamical phenomena of the chromosphere revealed by Hinode intensify interests on the plan B mission.
- **Key technology for >50 cm diffraction-limited telescope available due to Hinode heritage**
End-to-end observations on 5000km-thick layer exhibiting 4000K-to-a few MK change

Hinode imaging observations reveal unexpected highly dynamic chromosphere
- Chromosphere needs x10 heating energy.
- Not static atmosphere
- Coronal heating may be closely related to the interface region between the magnetic photosphere and the dissipative corona.

Spectroscopic observations with SOLAR-C

Hinode imaging observations

XRT

EIS
Plans A and B

- JAXA SOLAR-C WG investigates science, technology, and other constraints with international teams for decision.
- Tradeoff and figure-of-merit for decision making
 - Science merit is always the major driver.
 - Importance of deepening the Hinode science analysis
 - Feasibility of plan-A spacecraft and orbit critical
 - Technical feasibility for science instruments under constraints
 - Consistency and synergy with NASA and ESA plans
SOLAR-C and other ongoing missions

- **HINODE**
 - A case: 2015 Feb. (Orbit trans)

- **SOLAR-C**
 - 2014

- **ATST (NSF)**
 - 2014

- **SDO (NASA)**
 - 2008 Dec 08.

- **Solar Orbiter (ESA)**
 - 2015 May
 - 2018 summer reach obs-deck
 - 2021 summer Helio-lat. 15 degree
 - 2022-23 Helio-lat. 35 degree

Notes:

1. Plan A orbit trans. period not accurate, being studied.
2. NASA decadal plan beyond SDO not available.
3. ESA SOLAR ORBITER reach 0.22AU on summer of 2018.
SOLAR-C launch opportunity
(Not authorized by JAXA)

• PLANET-C 2010
• HAYABUSA-II 2011
• ASTRO-G 2012
• NEXT 2013
• SOLAR-C 2014
Justification for mid-2010 launch

• Plan A satellite has to reach a observing point around 2018 to be ready for the solar maximum and polar field reversal.
• Joint observations with highly complementary missions
 – NASA SDO (whole sun field of view)
 – ESA Solar Orbiter
• Continuity in solar physics research in Japan requires mission approximately every 10 years
 – Hinode launched in 2006.
 – Hinode science and data continue to be first grade upto solar maximum around 2011.
• Avoid vacuum in solar physics: No similar mission yet defined in NASA and ESA(?).
SOLAR-C development schedule
(under review by SOLAR-C WG and not authorized by JAXA)

- FY2014 Launch [2015 February]
- FY2014 S/C tests
- FY2012~13 Flight model
- FY2010~11 Proto model
- FY2009 JAXA phase-A
- FY2008 Select plan A or B
- FY2007 JAXA SOLAR-C WG
SOLAR-C near-term calendar

- **2007 October 16**
 - Meeting with NASA HQ personnel (Washington D.C.)
- **2007 December 18**
 - Meeting with NASA HQ delegation led by Dr. Alan Stern (ISAS).
- **2007 December 27**
 - SOLAR-C working group approved at ISAS space science steering committee with recommendation to present one mission again in one year
- **2008 Jan 30—Feb 1**
 - SOLAR-C—ESA Solar Orbiter science meeting in Lindau
SOLAR-C Summary

• Solar physics community in Japan has so far developed 3 solar missions over past 25 years.
• Success of Hinode and Yohkoh is due to strong US and European supports.
• Solar physics community and related-disciplines in Japan strongly desire and endorse the SOLAR-C mission concept to be realized in mid-2010.
• The JAXA SOLAR-C working group invites US and ESA participation to the SOLAR-C program, following our remarkable history of collaboration.
SOLAR-C organization

• JAXA/ISAS working group
 – Chair Tsuneta
 – Vice chair Sakao, Shimizu, Watanabe
• NAOJ SOLAR-C project office (proposed)
 – Head Hara
 – Vice head Katsukawa