Total Solar Irradiance and Solar Luminosity

2nd SOLAR-C Science Definition Meeting, ISAS/JAXA, 9. March 2010

Wolfgang Finsterle
TSI on SOLAR-C(A) — Science Goals

• Solar luminosity
 - Variability over the solar cycle?
 - Standard Solar Model boundary condition
 - Stellar evolution theory

• Meridional circulation and north-south asymmetries of the solar activity (dynamo)
 - Meridional temperature gradient
 - Discriminate between different models for latitudinal dependency of TSI variability
Luminosity ↔ Stellar Structure

- Steady-state assumption: \(\frac{dL}{dr} = 4 \pi r^2 \rho (\epsilon - \epsilon_v) \)
- Solar Luminosity: \(L_\odot = 4 \pi r_\odot^2 \sigma T_{\text{surface}}^4 = 4 \pi r_\odot^2 \int \rho (\epsilon - \epsilon_v) \)
- \(T_{\text{surface}} \) is linked to \(T_{\text{core}} \) via energy production process (p-p chain efficiency scales with \(T_{\text{core}}^4 \))

→ Accurate measurement of \(L_\odot \) thus allows us to determine the solar surface and core temperatures and to validate the Standard Solar Model and stellar evolution theory
Observational Requirements for Solar Luminosity

✔ Integrated disk measurements

✔ High heliographic latitude

✔ At 40° the effect of the polar areas appears with 64% of its amplitude

✔ Low noise level

✔ thermal stability

✔ temporal stability
Additional Benefits — Meridional Temperature

- Meridional temperature measured with HINODE suffers from uncertainty in photometric calibration of the images
- Integrated-disk measurements of TSI at different latitudes eliminate this problem
- \(1 \text{K} \sim 1 \text{Wm}^{-2} (\sim 700 \text{ ppm})\)
Latitudinal Heat Flow

- Conical (rather than cylindrical) rotation profile is indicative of latitudinal heat transfer and/or thermal forcing from the tachocline [Miesch et al., 2006]

- Variability of order of 1 – 10 K have been predicted by simulations and measured by helioseismic inversions [Brun et al., 2010]
Simulations vs. Observations

hot at high latitudes
warm at mid latitudes
cool at low latitudes

cool at low and high latitudes
warm at mid latitudes
\(\delta T \approx 10 \text{ K near the surface} \)

Brun et al., 2010
PMO6/PREMOS Thermal Stability

K

W

W
New TSI Radiometer

Highly symmetrical design for improved thermal stability and control of heat flows
Thermal Stability (-10 – 30 °C)

Reproducibility of measurements better than 10 ppm
What do we expect to see?

VIRGO Irradiance with Krivova Model subtracted (Krivova et al., 2003)

-10.8 ppm per degree (4 σ)

-7.2 ppm per degree (7 σ)

heliographic latitude of SoHO
N-S Asymmetry in Variability
Results from VIRGO/SOHO

Full Width at Half Maximum (Irradiance Variability)

- VIRGO
- VIRGO – Krivova Model

Wm$^{-2}$

- \(~1.2\) Wm$^{-2}$
- \(~0.9\) Wm$^{-2}$

heliographic latitude of SoHO
“The influence of an inclined rotation axis on solar irradiance variations”

Fig. 10. Comparison of the inclination effect for the flux integrated over the total wavelength range predicted by our model and under the assumptions of R98 and S93.

Knaack et al. 2001
Summary of VIRGO Results

• Ascending phase of solar cycle 23 appeared to be asymmetric
 – Larger *variability* on the southern hemisphere
 – Fully explained by Krivova TSI reconstruction
 – High-latitude observations allow to discrimination between conflicting model predictions
 – Accurate measurement of N-S asymmetry may help to better understand the solar dynamo
Summary of Scientific Return from TSI on SOLAR-C(A)

- Solar Luminosity
 - Temperature of solar core and surface
 - Energy production rate
 - Differential rotation, meridional circulation
 - Re-calibrate standard solar model and stellar evolution theories

- Asymmetries in activity pattern
 - Discriminate between conflicting models
 - Confine dynamo governing parameters